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The transcription factor nuclear factor kB (NF-kB) is a pleiotropic

protein complex that is activated from a sequestered,

cytoplasmic form by pro-inflammatory extracellular signals and

cellular stress. Several hundred cellular genes have been shown

to be regulated by NF-kB, including cytokines, chemokines and

adhesion molecules. Nearly eight years ago, a flurry of

publications showed that loss or suppression of NF-kB results in

an enhanced sensitivity to apoptosis. In the ensuing years,

activation of NF-kB has become almost synonymous with

enhanced cell survival, although more recent data suggests that

this transcription factor plays a more complex role in the

regulation of cell death.
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Abbreviations
ASK1 apoptosis signaling kinase 1

c-IAP cellular inhibitor of apoptosis

DD death domain

DR death receptor

Gadd45b growth arrest and DNA damage inducible 45b
IAP inhibitor of apoptosis

IKK IkB kinase

IjB inhibitor of NF-kB

IjB-a SD superdominant IkB-a
JNK c-jun N-terminal kinase

NF-jB nuclear factor-kB

RHD rel homology domain

SOD superoxide dismutase
TNF tumor necrosis factor

TNFR1 TNF type 1 receptor

TNFR2 TNF type 2 receptor

TRAIL TNF-related apoptosis-inducing ligand

XIAP X-linked inhibitor of apoptosis

Introduction
Apoptosis is a fundamental phenomenon required for the

homeostasis of multicellular organisms. From the early

stages of development to the adult organism, cell popula-

tions are constantly regulated through this process. The

mechanisms involved in apoptosis are evolutionarily con-

served and involve the sequential activation of specia-

lized proteases called caspases, which orchestrate and

execute the cell death process [1]. Apoptosis is tightly

regulated such that this event only takes place under

appropriate circumstances; this regulation involves sev-

eral endogenous cellular factors that counteract caspases

or their activating signals. The relative expression of pro-

or anti-apoptotic proteins can be regulated at the tran-

scriptional level, and a role for the transcription factor

NF-kB in the regulation of the apoptotic threshold has

become apparent in the past decade.

The transcription factor NF-kB is a dimeric complex

formed by members of a highly conserved family of

proteins that share a defining motif designated the Rel

homology domain (RHD). In mammals, there are five

genes that encode members of this family: RelA, RelB, c-
Rel, NF-kB1 and NF-kB2 [2]. Three of these genes, RelA,

c-Rel, and RelB, encode proteins that contain RHD and

transactivation domains. The NF-kB1 and NF-kB2 genes

encode large precursor polypeptides known as p105 and

p100; proteolytic cleavage of the C-terminal regions of

p105 and p100 results in p50 and p52, respectively [3,4],

and these subunits provide the bulk of the DNA binding

specificity. Heterodimers of RelA and p50 are the most

abundant NF-kB complexes in most cell types. In unsti-

mulated cells, NF-kB complexes are ordinarily seques-

tered in the cytoplasm through their interaction with

members of the inhibitor-of-kB (IkB) family. Phosphor-

ylation of IkB by a multimeric kinase complex, IkB kinase

(IKK), results in ubiquitination and proteasomal degrada-

tion of these proteins, allowing the nuclear translocation

of NF-kB complexes (Figure 1). NF-kB dimers in the

nucleus bind to cognate sequences of DNA present in an

array of gene promoters, which leads to transcriptional

activation. The transcriptional activity of nuclear-translo-

cated NF-kB complexes is also regulated by post-trans-

lational modifications, such as phosphorylation and

acetylation, that affect the transcriptional competence

of the subunits or their rate of nuclear export [5–7].

NF-kB plays a role in several physiological and patho-

physiological processes. It participates in the regulation of

innate and adaptive immunity, as many pro-inflammatory

gene products are controlled at the transcriptional level

by NF-kB [8]. In addition, NF-kB has been shown to

participate in the regulation of cell-cycle progression

through its effects on cyclin D1 expression [9]. Dereg-

ulation of NF-kB is involved in the pathogenesis of

various disorders; rearrangements and amplifications of
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various NF-kB genes have been detected in several

malignancies and have been implicated in the resistance

of cancer cells to therapy [10,11]. NF-kB also plays a role

in the transcriptional regulation of various viral genomes,

including that of HIV-1 [12–15]. Finally, NF-kB has been

implicated in the regulation of cell death through its

ability to regulate the expression of cellular factors that

affect the apoptotic threshold. Here we survey some of

the more notable NF-kB-induced target genes that have

been proposed to confer these anti-apoptotic effects, and

attempt to evaluate newer evidence that suggests a more

complex role for NF-kB in the control of cell survival.

The paradigm: NF-jB mediates resistance
to apoptosis
A role for NF-kB in resistance to cell death was initially

apparent in several experimental systems, including cell

death induced by tumor necrosis factor (TNF). TNF is a

major physiologic mediator of inflammation and is the

protoype member of a large family of >20 related proteins

including lymphotoxin-a, CD30 ligand, CD40 ligand,

Fas ligand and TNF-related apoptosis-inducing ligand

(TRAIL) [16]. These molecules mediate their signals

through members of the TNF receptor superfamily,

which can be divided into two subfamilies on the basis

of the intracellular signaling molecules recruited. The

cytoplasmic domains of several receptors, including TNF

type 1 receptor (TNFR1), Fas, and death receptors (DR)

3, 4 and 5, contain a conserved �80 amino acid motif

termed the death domain (DD). This element is capable

of recruiting DD-containing adaptor molecules, such as

TRADD and FADD, that are involved in the initiation of

apoptotic cell death. Other members of the TNF receptor

superfamily, such as TNF type 2 receptor (TNFR2),

CD30 or CD40, lack the DD and associate with different

types of adaptor molecules — most importantly, members

of the TRAF (TNF receptor-associated factor) family.

TNF mediates its signals through TNFR1 and TNFR2

and both receptors are capable of activating the IKK

complex. In addition to NF-kB signaling, TNF induces

activation of c-Jun N-terminal kinases (JNKs). Unlike

TNFR2, TNFR1 contains a death domain in its cyto-

plasmic tail that is capable of activating caspase-8 and this

event can ultimately lead to apoptotic cell death. Despite

this pro-apoptotic pathway, most cell types are usually

resistant to TNF-induced cell death.

Inhibition of cellular transcription or translation sensitizes

most cells to the pro-apoptotic effects of TNF. This

phenomenon suggested the possibility that the loss of

certain cellular factor(s) were responsible for the sensiti-

zation observed. The possibility that NF-kB was a prin-

cipal cellular factor responsible for resistance to TNF-

mediated cell death was suggested by several different

experimental models, including mouse strains deficient in

NF-kB activity. Mice deficient in RelA have severely

compromised NF-kB signaling, presumably because

RelA/p50 dimers are the most abundant NF-kB com-

plexes. These animals die in utero from massive hepato-

cyte cell death [17] and this phenotype can be rescued by

concurrent deficiency of TNF or TNFR1 [18–20]. In

addition, fibroblasts derived from these embryos demon-

strate significant sensitivity to TNF-mediated apoptosis

when cultured in vitro [21]. Similarly, deficiency of IKKb,

a subunit of the IKK complex that is necessary for TNF-

mediated NF-kB activation, also results in in utero leth-

ality in mice as a result of massive hepatocyte death.

Figure 1
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Schematic representation of the key steps in the activation of NF-kB.

Upon encountering various pro-inflammatory and stress signals, and

through various upstream signaling events, the IKK complex is activated.
This leads to phosphorylation of IkB proteins, targeting them for

ubiquitination and proteasomal degradation. Upon being released from

IkB, the nuclear localization signals of NF-kB complexes are exposed

allowing for nuclear translocation. Post-translational modifications of

RelA and c-Rel, including phosphorylation and acetylation, can occur

leading to enhanced transcriptional competence or decreased nuclear

export of the complexes. Anti- and pro-apoptotic genes can be

regulated by NF-kB, thus affecting apoptotic threshold of the cell.
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Fibroblasts from these embryos are also significantly

more sensitive to TNF [22–24]. Additional evidence

for a role of NF-kB in regulating the sensitivity of cells

to TNF-mediated apoptosis has been gleaned in other

experimental systems. Expression of superdominant

IkB-a (IkB-a SD), a mutant form that is abnormally

stable due to loss of IKK phosphorylation sites, results

in potent inhibition of NF-kB by sequestering com-

plexes in the cytosol. Cells induced to express IkB-a
SD by one of several transfection methods are sensitized

to TNF-mediated cell death [25]. Similarly, the trans-

duction of IkB-a SD into primary hepatocytes using

adenoviral vectors also promotes the pro-apoptotic

effects of TNF [26] and transgenic expression of IkB-

a SD in hepatocytes has a similar effect [27�]. All of these

studies point to the same conclusion: deficiency of basal

NF-kB activity increases sensitivity to TNF-mediated

cell death.

Many chemotherapeutic agents are capable of inducing

apoptotic cell death. Although the mechanisms respon-

sible for the activation of apoptosis by chemotherapeutic

agents are not fully understood, in many cases these are

known to involve mitochondrial destabilization and

release of pro-apoptotic factors, such as cytochrome c,

that lead to caspase-9 activation [28]. The sensitivity of

different cell types to these pro-apoptotic effects is vari-

able, and it has been noted that cancer cells can acquire

relatively high tolerance to these agents. The mechan-

isms that cancer cells employ to acquire chemoresistance

are multiple and complex [29], but a role for NF-kB

activation has been suggested. Evidence for this includes

the observation that expression of IkB-a SD as a means to

block NF-kB can increase the sensitivity of several cancer

cell lines to chemotherapeutic agents in vitro [30] and

similar blockade can reverse chemoresistance in in vivo

models [31].

NF-jB and the control of anti-apoptotic
genes
Consistent with NF-kB having an anti-apoptotic effect, it

has been observed that this transcription factor can reg-

ulate the expression of various anti-apoptotic proteins.

The presence of kB sites in the promoters of these genes

can affect the levels of these factors and the sensitivity of

the cell to apoptotic stimuli.

The bcl-2 gene family encodes a group of proteins that

regulate the process of mitochondrial release of pro-

apoptotic factors, such as cytochrome c and Smac/

DIABLO [32,33]. Some members of this family, includ-

ing Bax and Bad, promote mitochondrial release, whereas

others, such as Bcl-2 and Bcl-xL prevent this process and

are generally anti-apoptotic. At least three anti-apoptotic

members of this family, Bcl-2, Bcl-xL and Bfl-1, have

been shown to be induced by NF-kB [34–37], highlight-

ing the strong link between NF-kB and cell survival.

Several factors encoded by the inhibitor of apoptosis (iap)

family have been shown to regulate apoptosis through

their ability to bind to and inhibit various caspases [38].

The best-characterized member of the family is XIAP

(X-linked inhibitor of apoptosis), and this factor has the

highest anti-apoptotic potency of all these molecules [39].

Several reports give evidence that XIAP expression can

be affected by NF-kB [40,41], although this effect is

probably highly tissue-specific. Two other members of

this family, c-IAP1 and c-IAP2 (cellular inhibitor of

apoptosis -1 and -2), associate with TNF receptors and

are involved in TNF-mediated NF-kB activation [42].

When overexpressed in cells, c-IAP1 and -2 have been

reported to possess anti-apoptotic activity, although their

ability to directly inhibit caspases is at least 100-fold less

than that of XIAP [43]. The expression of c-IAP1 and

c-IAP2 is also responsive to NF-kB [44].

TNF-mediated JNK activation has also been implicated

in the mechanism leading to TNF-induced cell death.

Although the role of JNK-mediated signals in cell death

can vary between different experimental systems, JNK-1

and -2 deficient cells are more resistant to several cell

death stimuli [45]. Cells derived from RelA- or IKKb-

deficient mice, or normal cells in which NF-kB is blocked

by transient expression of IkB-a S.D, display an abnor-

mal pattern of JNK activation [40,46]. In these cells,

TNF treatment results in intense and prolonged JNK

activation. Inhibition of JNK partially restored resistance

to cell death [47], although not all studies have found the

same effect [48]. It has been proposed that decreased

NF-kB activity results in decreased expression of XIAP
and/or gadd45b (growth arrest and DNA damage indu-

cible 45b) in these cells, and that these factors are

involved in the regulation of JNK activation and cell-

death sensitivity in these cells. Other lines of evidence

suggest that the MAP3 kinase ASK1 (apoptosis signaling

kinase 1) is the kinase responsible for the pro-apoptotic

activation of JNK. Deficiency of ASK1 renders cells less

sensitive to TNF-mediated cell death and prevents

prolonged activation of JNK after TNF stimulation

[49]. It is unclear whether XIAP or Gadd45b can regulate

the activity of this kinase.

Various cell death pathways involve the generation of

cytotoxic reactive oxygen species. Cellular mechanisms

for scavenging these toxic metabolites include a group of

enzymes named superoxide dismutases (SODs). The

expression of one such SOD, MnSOD, is controlled by

NF-kB and this has been implicated as a potential

mechanism for mediating cell survival [50,51].

Against the paradigm: evidence that NF-jB
plays a neutral or pro-apoptotic role
An anti-apoptotic role for NF-kB would predict that the

inhibition of TNF-mediated NF-kB activation results in

enhanced cell death. However, there are several examples
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when this is not the case. A20 is a factor that was origin-

ally identified as a TNF-inducible cellular protein [52].

Functionally, A20 is capable of potently inhibiting TNF-

mediated NF-kB activation, although at the same time

this molecule has anti-apoptotic properties in various in
vitro models, including TNF-mediated cell death [53].

Consistent with these dual functions, A20-deficient mice

demonstrate a pro-inflammatory phenotype thought to be

the result of their inability to regulate TNF-mediated

NF-kB activation, while also showing increased sensitiv-

ity to TNF-mediated apoptosis [54]. An additional pre-

diction of the proposed model in which NF-kB plays a

generalized anti-apoptotic role in TNF-mediated cell

death is that activation of NF-kB should be cytoprotective.

However, NF-kB activation that results from stimulation

of TNFR2 [55,56] or other homologous receptors such as

CD30 [57] and CD40 [58] sensitizes cells to TNFR1-

mediated apoptosis [57]. Thus, the functional conse-

quences of NF-kB activation from different receptors vary,

and not all signals that activate NF-kB are anti-apoptotic.

Decreased basal NF-kB activity that results from RelA

deficiency sensitizes cells to TNF-mediated cell death. If

NF-kB plays a general role in setting the apoptotic

threshold, it would be expected that these cells might

be sensitive to other pro-apoptotic stimuli; similarly,

deficiencies of other NF-kB subunits could result in

similar phenotypes. However, c-Rel deficient fibroblasts

are not sensitized to TNF-mediated cell death. More-

over, c-Rel deficient cells are completely resistant to cell

death mediated by TRAIL, a molecule similar to TNF

that signals through DR4 and DR5; in addition, RelA-

deficient fibroblasts are only slightly more sensitive to

this stimulus than wild-type fibroblasts [59]. NF-kB

subunits that contain c-Rel are involved in the expression

of DR4 and DR5 [60], and cells lacking c-Rel are there-

fore deficient in these receptors and resistant to TRAIL-

mediated cell death.

NF-kB has also been implicated in the regulation of cell

death mediated by several endogenous cellular factors.

p53 can mediate apoptosis in response to several cellular

stresses through its ability to induce mitochondrial release

of pro-apoptotic factors [61�]. A separate report found that

inducible expression of p53 in cultured cells resulted in

nuclear translocation of NF-kB complexes, and that this

event was necessary for p53-mediated apoptosis [62]. In

this study, blockade of NF-kB translocation via expres-

sion of IkB-a SD protected cells from p53-mediated cell

death while sensitizing the same cells to TNF-mediated

apoptosis. These data suggest that inhibition of NF-kB

signaling can change the apoptotic threshold in different

directions depending on the apoptotic stimulus. Simi-

larly, HSCO, a novel NF-kB inhibitor that promotes

nuclear export of the NF-kB complex through its associa-

tion with RelA, was found to sensitize cells to TNF-

mediated cell death, while at the same time it prevented

p53-mediated apoptotic death [63��]. In other studies,

decreased NF-kB baseline activity as a result of deficien-

cies in IKKa and IKKb resulted in decreased Mdm2

expression and enhanced p53 stabilization in response

to chemotherapeutic agents [64]. These data raise the

possibility that NF-kB activation could play a protective

role against p53-mediated cell death. Indeed, cells defi-

cient in IKKa and IKKb were more sensitive to cell death

induced by chemotherapy, consistent with prior data

showing that NF-kB inhibition by expression of IkB-a
SD sensitizes cells to death induced by these agents.

Various members of the TNF receptor superfamily con-

tain a conserved motif within their cytoplasmic domains

known as the death domain [65]. When stimulated, these

so-called death receptors can induce apoptosis via oligo-

merization with adaptor proteins that recruit and induce

the activation of several upstream caspases, including

caspase-8 and -10. As discussed above, NF-kB has been

found to regulate the expression of DR4 and DR5 and

can also regulate other death receptors such as Fas [66].

NF-kB can also regulate the expression of Fas ligand.

In this context, NF-kB has been found to play a pro-

apoptotic role in activation-induced cell death and che-

motherapy-induced cell death in T cells by inducing

expression of Fas ligand [67,68]. On the other hand,

cellular factors that inhibit apoptosis mediated by death

receptors can also be regulated by NF-kB. These include

decoy death receptors, which are capable of binding to

ligand but lack cytoplasmic death effector domains [69],

and c-FLIP, a molecule that can block caspase-8 recruit-

ment and activation [70].

Conclusions
NF-kB is clearly capable of controlling the expression of

several anti- and pro-apoptotic factors. The inhibition of

basal levels of NF-kB can lead to increased sensitivity to

certain apoptotic stimuli. However, this has been inter-

preted as evidence that NF-kB activation resulting from

cell stimulation is also anti-apoptotic. This interpretation

assumes that the transcriptional activity and gene speci-

ficity of basal and stimulated NF-kB complexes are

identical. In addition, this model presupposes that the

simultaneous initiation of death signals and NF-kB acti-

vation can result in a protective effect in this setting,

which has yet to be comprehensively addressed. More

recent data suggest that, under certain circumstances,

NF-kB activation can render cells more sensitive to

certain pro-apoptotic stimuli and that inhibition of certain

NF-kB complexes can render cells more resistant to

certain forms of cell death. These findings are consistent

with the observations that both pro- and anti-apoptotic

gene products are regulated by NF-kB. Given the cell-

type- and stimulus-dependent effects of NF-kB on the

regulation of apoptosis, it will be of great importance to

further evaluate these pathways as NF-kB inhibitors are

developed for therapeutic use.
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