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mRNAs are transported from the nucleus to the cytoplasm by a

machinery conserved from yeast to humans. Previous studies

showed that mRNA export factors are loaded on nascent

mRNAs during elongation, coupling transcription to export. More

recently identified mRNA export factors connect transcription

initiation to the export machinery associated with nuclear pores,

and potentially tether active genes to the nuclear periphery.

Furthermore, a newly identified link between the nuclear

exosome and the transcription, 30-end formation and export

machineries suggests that early messenger ribonucleoprotein

complex (mRNP) assembly is co-transcriptionally monitored.

Moreover, inefficient mRNP assembly impairs transcription

elongation, indicating tight interdependence of these processes.

Finally, nuclear retention of unspliced mRNAs by the

perinuclear Mlp proteins reveals a novel mechanism of mRNP

surveillance prior to export.
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Abbreviations
BA boundary activity

EJC exon junction complex

mRNP messenger ribonucleoprotein complex

NPC nuclear pore complex

Pol II RNA polymerase II

RNAi RNA interference
TREX transcription and export complex

Introduction
Considerable evidence indicates that the different steps

involved in the biogenesis and export of mRNAs are

tightly linked to each other. RNA polymerase II (Pol II)

plays a central role in all these events, as it mediates

the recruitment to nascent mRNAs of factors involved in

50 capping, splicing, 30 end formation and mRNA export

[1,2]. The deletion of the yeast RNA polymerase II

C-terminal domain (CTD) results in cleavage and poly-

adenylation defects, and mutations in the 30 end proces-

sing machinery interfere with transcription termination

and export [3–5]. Conversely, defects in RNA processing

can feed back on the pathway and negatively influence

transcription [6,7]. All these molecular couplings are

likely to be part of surveillance mechanisms ensuring

that only fully mature and functional messenger ribonu-

cleoprotein (mRNP) particles reach the cytoplasm [8,9].

In this review, we first focus on newly identified and

evolutionarily conserved mRNA export factors, which

extend the links between the transcription and mRNA

export machineries, and suggest that multiple, possibly

overlapping, pathways direct mRNPs to the cytoplasm.

We then address the role of post-transcriptional modifica-

tions in the regulation of mRNA export. Finally we

discuss the early steps of mRNP assembly and the sur-

veillance mechanisms developed by the cell to prevent

accumulation and export of malformed and non-

functional mRNP complexes.

mRNA export receptors and adaptors
Major constituents of the mRNA export pathway have

been identified and appear to be conserved from yeast to

humans. The mRNA export adaptor Yra1p/REF (Aly/

REF in mammals) and its partner, the ATPase/RNA

helicase Sub2p (UAP56), associate with mRNA during

transcription. At a later stage, Yra1p/REF recruits the

essential heterodimeric export receptor Mex67p–Mtr2p

(TAP/NXF1–p15/NXT1). Mex67p–Mtr2p releases Sub2p

and promotes mRNP translocation by mediating interac-

tions with nucleoporins lining the pore [9,10].

Recent RNAi-based knock-down experiments in Droso-
phila cells by the Izaurralde lab revealed that whereas

NXF1 and UAP56 are required for the export of most

transcripts, REF is not essential for bulk poly(A)þ RNA

export [11�,12,13�]. REF proteins are also dispensable in

Caenorhabditis elegans [14�]. These data suggest that addi-

tional adaptors mediate the interaction between TAP/

NXF1 and cellular mRNAs in metazoans, and that the

essential role of UAP56 in mRNA export may not be re-

stricted to the recruitment of REF. Steitz and co-workers

presented evidence that the serine/arginine-rich splicing

factors Srp20 and 9G8, previously shown to promote

export of intronless histone mRNAs in Xenopus oocytes,

bind TAP in the same domain as REF, suggesting that

these proteins may function as alternative adaptors [15].

A global approach in yeast, published by the Silver lab,

showed that only a fraction of transcripts associate with

Yra1p/REF, suggesting the existence of additional adap-

tors in this lower eukaryote [16�]. Consistently, a recent

study by the Guthrie lab shows that the SR-like protein

Npl3p directly interacts with the export receptor Mex67p

and participates in its recruitment to the mRNP [17��].
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In higher eukaryotes, pre-mRNA splicing results in the

deposition of the exon junction complex (EJC) on spliced

mRNA [18]. The presence of UAP56 and Aly/REF within

the EJC and the observation that pre-mRNA splicing

enhances the export of certain transcripts in Xenopus

oocytes led to the proposition that the EJC couples

splicing to export by facilitating the recruitment of

TAP/NXF1 to spliced transcripts [10,19]. However,

although the presence of an intron may stimulate export

of small transcripts, splicing is not a general requirement

for nuclear exit. Accordingly, Sub2p/UAP56 and yeast

Yra1p are essential for the export of transcripts derived

from intron-containing and intron-less genes, indicating

that these essential export factors can bind mRNAs via a

mechanism independent of splicing [20]. Recent studies

by the Moore and Cullen labs further demonstrated that

pre-mRNA splicing does not promote mRNA export in

mammalian cells, but rather that EJC components

enhance 30-end processing/polyadenylation and mRNA

polysome association, resulting in increased translation of

spliced versus intronless transcripts [21�,22�].

mRNA transcription and export are
functionally coupled
Early experiments by the Silver lab have shown that

Yra1p/REF is recruited to mRNA during transcription

[23]. More recent genetic and biochemical interactions

published by the Hurt and Jensen labs and our lab have

connected Sub2p and Yra1p to THO, a tetrameric complex

composed of Hpr1p, Tho2p, Mft1p and Thp2p. THO has

been implicated in transcription elongation and genome

stability and more recently in mRNA export [24,25�,
26��,27�]. It is unclear how conserved this complex is,

as there are no clear homologues of Mft1p or Thp2p in

metazoa or even in S. pombe. THO, Sub2p and Yra1p co-

purify in a complex called TREX, which is proposed to

couple transcription and export. TREX components are

recruited to an active gene at a similar time during

transcription elongation [26��]. Hpr1p directly interacts

with Sub2p and facilitates the binding of Sub2p and

Yra1p to nascent transcripts [27�].

Recent studies by Hurt and co-workers identified addi-

tional conserved mRNA export factors linked to the

transcription machinery. A screen for mutations synthe-

tically lethal with Yra1p identified Sac3p, a protein inter-

acting with Mex67p and nucleoporins [28�]. Sac3p also

tightly binds Thp1p, which was previously implicated

in transcription elongation and genome stability [29].

Deletion of either Thp1p or Sac3p results in poly(A)þ
RNA export defects. Importantly, Sac3p tethers Thp1p to

the nuclear periphery via interaction with FG-nucleopor-

ins on the nuclear side of the nuclear pore complex (NPC)

[28�]. In contrast, genetic analyses and immuno-electron

microscopy studies by the Silver lab indicated that Sac3p

associates with the cytoplasmic face of the NPC and

showed that Mex67p accumulates at the nuclear rim

when SAC3 is mutated [30]. This study suggested a role

for Sac3p in releasing Mex67p from the mRNP at a

terminal step of mRNA export. Considering both the

Hurt and Silver studies, it is possible that Thp1p–Sac3p

associates with the mRNP at an early stage, and parti-

cipates in the docking and subsequent translocation

of Mex67p-containing mRNPs through the NPC. The

Thp1p–Sac3p complex may functionally overlap with

Yra1p in linking intranuclear mRNA biogenesis and

export.

More recently the Hurt lab described a new protein,

Sus1p, which tightens the connection between Sac3–

Thp1 and the transcription machinery [31��]. Sus1p

associates with the Thp1–Sac3 complex as well as with

SAGA, a large intranuclear histone acetylase complex

involved in transcription initiation of a subset of Pol II

genes [32]. Sus1p is a nuclear protein that concentrates

at pores, and its peripheral localization depends on

Sac3p. Consistent with its binding to SAGA, Sus1p is

recruited to SAGA-dependent genes during transcription

initiation. The deletion of Sus1p causes both transcrip-

tional and mRNA export defects consistent with a role in

both processes. Moreover, a fraction of Thp1p co-purifies

with SAGA, suggesting that Sus1p may physically con-

nect SAGA to the Thp1p–Sac3p complex (Figure 1). The

identification of such a supercomplex led the authors to

propose that Sus1p couples transcription and export.

However, this study failed to provide evidence for a

functional coupling between these complexes. Indeed,

macroarray analyses identified a modest overlap between

the set of genes regulated by the SAGA complex and by

Sus1p. In addition, there was no evidence indicating that

genes regulated by Sus1p fail to be exported in the

absence of Thp1p, Sac3p or a functional Mex67p protein.

The modest correlation observed so far between the

biochemical and functional data suggests that the pro-

posed role of Sus1p in functionally coupling mRNA

transcription and export may concern a limited number

of genes. One possibility is that Sus1p recruits the Thp1p-

Sac3p complex to a subset of SAGA-dependent promo-

ters, facilitating its interaction with nascent transcripts.

Alternatively, Sus1 may tether SAGA-dependent genes

to the nuclear periphery via binding to the NPC-bound

Thp1–Sac3p complex, optimizing the access of newly

made transcripts to the NPC channel. In summary, the

current data suggest that TREX (transcription and export

complex) and the Sus1p–Thp1p–Sac3p complex repre-

sent parallel pathways linking transcription to the export

machinery. Whether Thp1–Sac3p and TREX compo-

nents bind distinct mRNAs or are sequentially recruited

to the same transcript remains to be determined

(Figure 1).

Regulation of mRNA export
An important question is how mRNA export is regulated

and how assembly and disassembly of export complexes is
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controlled. Interestingly, Tom1p, an ubiquitin E3 ligase

associated with the SAGA complex [33], is required for

mRNA export. Indeed, mutations in Tom1p block the

export of transcripts containing the shuttling mRNA

binding protein Nab2p [34,35]. Genetic interactions

further indicate a connection between Nab2p and the

Sus1p–Thp1p–Sac3p complex, suggesting that post-

translational modification by ubiquitin may regulate this

pathway [31��,36]. Recent evidence by the Hurt and

Dargemont labs shows that another ubiquitin E3 ligase,

called Rsp5p, is also essential for mRNA export [37,38].

The identification of specific substrates should indicate

whether Rsp5p and Tom1p control distinct pathways and

reveal how ubiquitin regulates mRNP biogenesis and

export.

A recent paper by the Guthrie lab demonstrates that post-

transcriptional modification by phosphorylation also con-

tributes to mRNA export regulation [17��]. As mentioned

above, this study identified Npl3p, an SR-like protein

essential for mRNA export, as a new adaptor for the

export receptor Mex67p. Npl3p is recruited to nascent

mRNPs in its phosphorylated form but interacts with

Mex67p only in its unphosphorylated form. Importantly,

the authors show that Glc7p, a phosphatase essential for

mRNA export, coordinates dephosphorylation of Npl3p

with the release of the mRNP from the 30-end processing

machinery and the recruitment of Mex67p to the mRNP.

Such a mechanism may ensure that only correctly 30-end

processed mRNPs become associated with the export

receptor. After translocation, the cytoplasmic kinase

Sky1p phosphorylates Npl3p, promoting the dissociation

of Mex67p from the mRNP [39]. These observations

show that a cycle of cytoplasmic phosphorylation and

nuclear dephosphorylation of Npl3p, and perhaps other

shuttling SR proteins, regulates Mex67p-dependent

mRNA export [40].

Links between mRNA 30 end formation and
export
Ample evidence indicates that the export machinery is

loaded on the mRNA co-transcriptionally. However, 30

end cleavage and polyadenylation appear to be the most

crucial steps for the acquisition of export competency.

Both cis- and trans-acting 30 end processing mutants

block mRNA export [41,42,43�]. Moreover, Rosbash’s

lab showed that transcripts generated by T7 RNA poly-

merase are exported provided they are correctly pro-

cessed at their 30 end. This indicated that 30 end

processing is both necessary and sufficient for export

and that export factors can be recruited to mRNAs

independently of RNA polymerase II [44�]. The poly(A)

binding protein Pab1p and the shuttling-mRNA-binding

protein Nab2p contribute to poly(A) tail length control

and export, possibly linking the 30 end processing and

export machineries, but the molecular interactions under-

lying this functional coupling remain poorly defined

[35,43�,45�,46]. In contrast, connections between 30-end

formation and transcription are better understood and are

discussed by Proudfoot in a review in this issue.

Early mRNP assembly and surveillance
Recent data from the Jensen, Libri, and Rosbash labs

[25�] as well as work by our group [27�] have linked

TREX to the nuclear exosome, a large complex of 30-
to-50 exonucleases involved in RNA processing and

degradation of improperly assembled mRNP particles

or mRNP particles whose 30 ends have not been properly

processed. These two studies show that mutations in

THO, Sub2p or Yra1p result in low mRNA levels and

the sequestration of newly made transcripts in nuclear

foci. Importantly, the deletion of Rrp6p, a nuclear exo-

some component, releases transcripts from nuclear dots

and rescues the 30 end truncation phenotype of TREX

mutants, indicating that transcripts are made in these

strains but retained and degraded by the exosome. These

observations suggest that THO, Sub2p and Yra1p func-

tion primarily in co-transcriptional mRNP assembly,

ensuring packaging of mRNA into stable and exportable

Figure 1
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Model for transcription coupled export by the Sus1–Thp1–Sac3 and

THO–Sub2–Yra1 (TREX) complexes. Sus1p connects the SAGA

complex, which is involved in transcription initiation, to Thp1p–Sac3p,

a complex associated with the NPC via Nup1p. Sus1p may recruit

Thp1p–Sac3p to SAGA-dependent transcripts (not shown); alternatively

it may tether SAGA-dependent genes to the nuclear periphery at an early

stage of transcription. Sac3p may facilitate the docking of mRNP

complexes to the NPC via interaction with both Mex67p and

nucleoporins [28�,31��]. The mRNA export factors Sub2p and Yra1p

are loaded on nascent mRNAs during transcription elongation in a

process facilitated by the THO complex, associated with RNA pol II

[26��,27�]. Sub2p and Yra1p recruit the export receptor Mex67p,
which targets mRNPs through the NPC. Whether Mex67p is recruited by

Yra1p and then binds Sac3p, or whether Mex67p is independently

recruited by the two coupling factors, is unknown. The shuttling SR-like

protein Np13p acts as an adaptor for Mex67p [17��] (not shown).
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mRNP particles. In situ localizations by the Jensen lab

recently showed that transcripts retained in foci are in

close proximity to the encoding locus [47�]. Conse-

quently, the nuclear exosome was proposed to monitor

early mRNP assembly, retaining and eliminating impro-

perly 30 processed or malformed mRNP particles at or

close to the site of transcription. Strong evidence for co-

transcriptional monitoring of mRNP assembly came from

the Lis lab, who showed that in Drosophila the exosome is

recruited to active genes via interactions with elongation

factors [48��].

The observation that transcripts made in TREX mutants

are degraded by the exosome is subject to controversy.

Long-standing work from the Aguilera lab claims that

mutations in THO affect transcription elongation, espe-

cially of long and GC-rich mRNAs such as LacZ, and that

these elongation problems in turn cause DNA hyper-

recombination and genome instability [24,49,50]. This

lab now provides a molecular mechanism for the pro-

posed elongation defect [51��]. They show that nascent

transcripts produced in a THO mutant tend to form

DNA:RNA hybrids with the transcribed region behind

the advancing polymerase. Importantly, ribozyme-

mediated self-cleavage of the nascent mRNA and over-

expression of RNAse H1 eliminate DNA:RNA hybrids,

and concomitantly rescue the elongation and hyper-

recombination phenotypes. The authors propose that

the DNA:RNA hybrids directly affect transcription

elongation by obstructing the next elongating polymer-

ase. This road-block may in turn favor DNA hyper-

recombination, linking efficient mRNP packaging to

genome stability [52]. An important role of THO/TREX

may therefore be to prevent DNA:RNA hybrid forma-

tion, probably by promoting efficient co-transcriptional

mRNP packaging.

In summary, the ‘transcriptional’ and ‘exosomal’ models

agree on a primary role for THO in mRNP assembly, but

provide different explanations as to the origin of 30-end-

truncated transcripts in THO mutants. The two views are

not mutually exclusive and more detailed analyses may

reveal that both transcription elongation and mRNA

stability are affected by inefficient mRNP assembly

(Figure 2). In an extreme scenario, the exosome may

itself contribute to polymerase stalling by recognizing

DNA:RNA hybrids. More detailed analyses are required

to dissect the exact relationship between the transcription

machinery, the nascent mRNP and the exosome carrying

out surveillance.

Noteworthily, Aguilera and co-workers have shown that

mutations in most factors involved in mRNP biogenesis

and export, including Sub2p, Yra1p, Thp1p-Sac3p,

Nab2p, Mex67p and Mtr2p, confer a transcription elon-

gation defect and transcription-dependent hyper-recom-

bination comparable to that described for THO mutant

strains [36,53�]. The similarity of these phenotypes sug-

gests that any problem along the mRNP export assembly

line negatively impacts on mRNA synthesis and/or stab-

ility, as well as on genome stability. These observations

once more underline the strong interdependence of

mRNP biogenesis steps from genes to nuclear pores.

A paper by the Cole lab further illustrates the tight links

between mRNP formation and transcription. These

Figure 2
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transcriptional surveillance by the nuclear exosome results in the retention and 30–50 degradation of malformed mRNPs at or close to the site of

transcription. In this view, transcripts are fully synthesized but unstable and degraded [25�,27�]. The transcriptional model (model 2) claims

that malformed mRNP complexes form stretches of DNA:RNA hybrids with the coding DNA strand. The DNA:RNA hybrids impair transcription

elongation by creating an obstacle for the next elongating RNA polymerase [51��]. Both views propose that an important role of THO/TREX is

to promote efficient mRNP assembly, preventing the formation of DNA:RNA hybrids during elongation and protecting the mRNP from degradation

by the exosome.
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studies establish genetic and biochemical links between

Dbp5p, a shuttling DEAD-box ATPase RNA helicase

essential for mRNA export, and factors involved in tran-

scription initiation [54], pointing to a role for Dbp5p in

mRNP assembly at early stages of transcription. Inter-

estingly, mutations that impair transcription suppress

dbp5 mutant phenotypes. These observations suggest

that slowing transcription may alleviate mRNP assembly

defects by providing more time for proper mRNP folding.

This communication between transcription and nascent

mRNP formation may be viewed as another aspect of

mRNP quality control.

Mlp proteins contribute to mRNP
surveillance at the nuclear periphery
Mlp1p and Mlp2p are filamentous proteins, homologous

to hTpr, that are anchored at the nuclear basket of the

NPC. Although Mlp proteins interact with mRNP com-

ponents, these proteins are not required for mRNA export

and were previously proposed to function in docking or

surveillance of mRNA complexes at the pore [55,56].

Consistent with this view, the Nehrbass and Jacquier

groups now show that Mlp1p participates in a quality

control step that prevents the export of intron-containing

transcripts. The data indicate that pre-mRNA retention is

mediated via the 50 splice site, but the factor directly

connecting pre-mRNA to Mlp1p remains unknown [57��]
(Figure 3). Unspliced pre-mRNAs may not be the only

faulty transcripts retained by Mlp proteins. Indeed,

genetic interactions functionally relate Yra1p and Mlp

proteins, and evidence suggests that Mlp1p and Mlp2p

retain and induce a decrease in mRNA levels in a yra1
mutant strain (Vinciguerra et al., unpublished). Our cur-

rent view is that Mlp proteins function as a sorting filter

preferentially interacting with properly assembled

mRNP particles. The inability of faulty mRNPs to dock

at the Mlp barrier may negatively impact on their synth-

esis or stability. So far, Nab2p is the only mRNA binding

protein known to directly interact with Mlp proteins

[58�]. This interaction and the proposed role of Nab2p

in polyA tail length regulation suggests that this protein

plays a role in the docking of mRNPs to the Mlp platform,

perhaps by signaling proper 30 end formation (Figure 3).

Conclusions
mRNA export relies on a complex network of interactions

that functionally couple early mRNP assembly and pro-

cessing to the conserved nuclear export machinery.

Recent findings reveal that transcription and export

may be linked via several adaptor complexes sequentially

recruited to the nascent mRNP during transcription.

Whether these coupling factors contribute to the export

of distinct or overlapping classes of transcripts remains to

be defined. Individual components of the THO or Sus1p–

Thp1p–Sac3p complexes are not essential for vegetative

growth, suggesting that co-transcriptional loading of

Figure 3
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Mlp proteins form a selective filter at the entrance of the nuclear pore complex. (a) The perinuclear Mlp1p protein contributes to mRNP surveillance by

retaining unspliced transcripts within the nucleus, possibly via recognition of a component associated with the 50 splice site [57��]. (b) Nab2p, a

shuttling mRNA binding protein involved in polyA tail length regulation, directly interacts with Mlp proteins [58�]. Nab2p may be important for

the docking of mRNPs to the Mlp barrier, perhaps by signaling proper 30 end formation. Consistent with their inessential nature, Mlp proteins

may play a general role in mRNP surveillance by preferentially interacting with properly packaged mRNP complexes, preventing mRNPs that lack

essential signals from reaching the central channel of the NPC.
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export factors is not required under normal growth con-

ditions, or that these recruitment pathways are partially

redundant [9].

Co-transcriptional recruitment and monitoring by the

exosome carrying out surveillance may favor recognition

and elimination of faulty transcripts at an early step,

before their release into the nucleoplasm. The proposed

role of Mlp proteins in quality control reveals an addi-

tional step of mRNP surveillance at the nuclear periph-

ery, prior to export. Interestingly, the recent study by

Galy et al. shows that Mlp proteins localize only on

sections of the nuclear envelope adjacent to chromatin

[57��], suggesting that these filamentous proteins might

contact active genes and exert surveillance at an early

stage of mRNP formation. The physical link between

SAGA and the Sus1p–Thp1p–Sac3p complex supports

the view that transcriptionally active genes may indeed

become tethered to the nuclear periphery [31��]. Along

the same lines, the Laemmli lab has shown that tethering

a genomic locus to the nuclear pore complex dramatically

alters gene activity, suggesting that the NPC may more

generally create an environment favorable to gene expres-

sion [59�] in addition to its newly identified function in

mRNP surveillance.
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