
  

Sniffers, buzzers, toggles and blinkers: dynamics of regulatory 
and signaling pathways in the cell 
John J Tyson*†, Katherine C Chen*‡ and Bela Novak§ 
The physiological responses of cells to external and internal 
stimuli are governed by genes and proteins interacting in 
complex networks whose dynamical properties are impossible 
to understand by intuitive reasoning alone. Recent advances by 
theoretical biologists have demonstrated that molecular 
regulatory networks can be accurately modeled in 
mathematical terms. These models shed light on the design 
principles of biological control systems and make predictions 
that have been verified experimentally. 
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Abbreviations  

Cdk cyclin-dependent kinase 

CKI cyclin-dependent kinase inhibitor  

IP3 inositol trisphosphate  

MAPK mitogen-activated protein kinase 

MPF M-phase-promoting factor (Cdk1–cyclin B) 

Introduction 
Since the advent of recombinant DNA technology about 20 
years ago, molecular biologists have been remarkably 
successful in dissecting the molecular mechanisms that 
underlie the adaptive behavior of living cells. Stunning 
examples include the lysis–lysogeny switch of viruses [1], 
chemotaxis in bacteria [2], the DNA-division cycle of yeasts 
[3], segmentation patterns in fruit fly development [4] and 
signal transduction pathways in mammalian cells [5]. When 
the information in any of these cases is laid out in graphical 
form 
(http://discover.nci.nih.gov/kohnk/interaction_maps.html; 
http://www.csa.ru:82/Inst/gorb_dep/inbios/genet/s0nt 
wk.htm; http://www.biocarta.com/genes/index.asp), the 
molecular network looks strikingly similar to the wiring 
diagram of a modern electronic gadget. Instead of resistors, 
capacitors and transistors hooked together by wires, one 
sees genes, proteins and metabolites hooked together by 
chemical reactions and intermolecular interactions. The 
temptation is irresistible to ask whether physiological 
regulatory systems can be understood in mathematical 

terms, in the same way an electrical engineer would model 
a radio [6]. Preliminary attempts at this sort of modeling 
have been carried out in each of the cases mentioned 
above [7–11,12••,13,14,15••]. 

To understand how these models are built and why they 
work the way they do, one must develop a precise 
mathematical description of molecular circuitry and some 
intuition about the dynamical properties of regulatory 
networks. Complex molecular networks, like electrical 
circuits, seem to be constructed from simpler modules: sets 
of interacting genes and proteins that carry out specific 
tasks and can be hooked together by standard linkages [16]. 
Excellent reviews from other perspectives can be found 
elsewhere [17,18•,19–22,23•,24•,25], and also book-length 
treatments [26–29].  

In this review, we show how simple signaling pathways can 
be embedded in networks using positive and negative 
feedback to generate more complex behaviors — toggle 
switches and oscillators — which are the basic building 
blocks of the exotic, dynamic behavior shown by nonlinear 
control systems. Our purpose is to present a precise 
vocabulary for describing these phenomena and some 
memorable examples of each. We hope that this review will 
improve the reader’s intuition about molecular dynamics, 
foster more accurate discussions of the issues, and promote 
closer collaboration between experimental and 
computational biologists. 

Linear and hyperbolic signal-response curves 
Let’s start with two simple examples of protein dynamics: 
synthesis and degradation (Figure 1a), and phosphorylation 
and dephosphorylation (Figure 1b). Using the law of mass 
action, we can write rate equations for these two 
mechanisms, as follows: 
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In case (a), S = signal strength (e.g. concentration of 
mRNA) and R = response magnitude (e.g. concentration of 
protein). In case (b), RP is the phosphorylated form of the 
response element (which we suppose to be the active form), 
RP = [RP], and 
RT = R + RP = total concentration of the response element. 
A steady-state solution of a differential equation, 
dR/dt = f(R), is a constant, Rss, that satisfies the algebraic 
equation f(Rss) = 0. In our cases, 
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These equations correspond to the linear and hyperbolic 
signal-response curves in Figure 1. In most cases, these 



  

simple components are embedded in more complex 
pathways, to generate signal-response curves of more 
adaptive value. 

Sigmoidal signal-response curves 
Case (c) of Figure 1 is a modification of case (b), where the 
phosphorylation and dephosphorylation reactions are 
governed by Michaelis-Menten kinetics: 
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In this case, the steady-state concentration of the 
phosphorylated form is a solution of the quadratic equation: 

)())(( PT1mP2P2mPT1 RRKRkRKRRSk −+=+− . 
The biophysically acceptable solution (0 <RP <RT) of this 
equation is [30]: 

(c) ),,,(,

T

2m

T

1m
21

T

ssP

R
K

R
K

kSkG
R

R
= , 

where the ‘Goldbeter-Koshland’ function, G, is defined as: 
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In Figure 1c, column 3, we plot RP,ss as a function of S: it is a 
sigmoidal curve if J and K are both <<1. This mechanism 
for creating a switch-like signal-response curve is called 
zero-order ultrasensitivity. 

The Goldbeter–Koshland function, although switch-like, 
shares with linear and hyperbolic curves the properties of 
being graded and reversible. By ‘graded’ we mean that the 
response increases continuously with signal strength. A 
slightly stronger signal gives a slightly stronger response. 
The relationship is ‘reversible’ in the sense that if signal 
strength is changed from Sinitial to Sfinal, the response at Sfinal is 
the same whether the signal is being increased (Sinitial < Sfinal) 
or decreased (Sinitial > Sfinal). Although continuous and 
reversible, a sigmoidal response is abrupt. Like a buzzer or 
a laser pointer, to activate the response one must push hard 
enough on the button, and to sustain the response one must 
keep pushing. When one lets up on the button, the 
response switches off at precisely the same signal strength 
at which it switched on. 

Perfectly adapted signal-response curves 
By supplementing the simple linear response element 
(Figure 1a) with a second signaling pathway (through 
species X in Figure 1d), we can create a response 
mechanism that exhibits perfect adaptation to the signal. 
Perfect adaptation means that although the signaling 
pathway exhibits a transient response to changes in signal 
strength, its steady-state response Rss is independent of S. 
Such behavior is typical of chemotactic systems, which 
respond to an abrupt change in attractants or repellants, but 
then adapt to a constant level of the signal. Our own sense 
of smell operates this way, so we refer to this type of 
response as a ‘sniffer.’ 

The hyperbolic response element (Figure 1b) can also be 
made perfectly adapted by adding a second signaling 
pathway that down regulates the response. Levchenko and 
Iglesias [31•] have used a mechanism of this sort to model 
phosphoinosityl signaling in slime mold cells and 
neutrophils.  

Many authors have presented models of perfect adaptation 
(see [32–35] for representative published work). 

Positive feedback: irreversible switches 
In Figure 1d the signal influences the response via two 
parallel pathways that push the response in opposite 
directions (an example of feed-forward control). 
Alternatively, some component of a response pathway may 
feed back on the signal. Feedback can be positive, negative 
or mixed. 

There are two types of positive feedback. In Figure 1e, R 
activates protein E (by phosphorylation), and EP enhances 
the synthesis of R. In Figure 1f, E promotes the 
degradation of R; hence, R and E are mutually antagonistic. 
In either case (mutual activation or antagonism), positive 
feedback may create a discontinuous switch, meaning that 
the cellular response changes abruptly and irreversibly as 
signal magnitude crosses a critical value. For instance, in 
Figure 1e, as signal strength (S) increases, the response is 
low until S exceeds some critical intensity, Scrit, at which 
point the response increases abruptly to a high value. Then, 
if S decreases, the response stays high (i.e. the switch is 
irreversible; unlike a sigmoidal response, which is 
reversible). Notice that, for S values between 0 and Scrit, the 
control system is ‘bistable’ — that is, it has two stable 
steady-state response values (on the upper and lower 
branches — the solid lines) separated by an unstable steady 
state (on the intermediate branch — the dashed line). 

The signal-response curves in Figure 1e,f would be called 
‘one-parameter bifurcation diagrams’ by an applied 
mathematician. The parameter is signal strength 
(manipulable by the experimenter). The steady-state 
response, on the Y axis, is an indicator of the behavior of 
the control system as a function of the signal. At Scrit, the 
behavior of the control system changes abruptly and 
irreversibly from low response to high response (or vice 
versa). Such points of qualitative change in the behavior of a 
nonlinear control system are called bifurcation points; in 
this case, a ‘saddle-node bifurcation point’. We will shortly 
meet other, more esoteric bifurcation points, associated 
with more complex signal-response relationships. 

Discontinuous responses come in two varieties: the one-
way switch (e.g. Figure 1e), and the toggle switch 
(e.g. Figure 1f). One-way switches presumably play major 
roles in developmental processes characterized by a point-
of-no-return (see, for example, [21]). Apoptosis is another 
decision that must be irreversible in this sense. A 
particularly clear experimental example is frog oocyte 
maturation in response to progesterone [36]. 

In the toggle switch, if S is decreased enough, the switch 
will go back to the off-state, as in Figure 1f (column 3). For 
intermediate stimulus strengths (Scrit1 < S < Scrit2), the 



  

response of the system can be either small or large, 
depending on how S was changed. This sort of two-way, 
discontinuous switch is often referred to as hysteresis. Nice 
examples include the lac operon in bacteria [21], the 
activation of M-phase-promoting factor (MPF) in frog egg 
extracts [37], and the autocatalytic conversion of normal 
prion protein to its pathogenic form [38••]. Bistable 
behavior of MPF in frog egg extracts has recently been 
confirmed experimentally by two groups: Sha et al. [39], and 
Pomerening and Ferrell (personal communication). Chen 
et al. [9] proposed that a toggle switch governs the ‘start’ 
and ‘finish’ transitions in the budding yeast cell cycle, and 
this prediction was confirmed recently in an elegant 
experiment by Cross et al. [40••]. 

Toggle switches have also been realized in artificial genetic 
networks based on mutual inhibition [41] or mutual 
activation [42•]. These networks were designed and built in 
explicit reliance on theoretical ideas of the kind we have 
described.  

Negative feedback: homeostasis and 
oscillations 
In negative feedback, the response counteracts the effect of 
the stimulus. In Figure 1g, the response element, R, 
inhibits the enzyme catalyzing its synthesis; hence, the rate 
of production of R is a sigmoidal decreasing function of R. 
The signal in this case is the demand for R (i.e. the rate of 
consumption of R is given by k2SR. The steady state 
concentration of R is confined to a narrow window for a 
broad range of signal strengths, because the supply of R 
adjusts to its demand. This type of regulation, commonly 
employed in biosynthetic pathways, is called homeostasis. 
It is a kind of imperfect adaptation, but it is not a sniffer 
because stepwise increases in S do not generate transient 
changes in R. 

Negative feedback can also create an oscillatory response. A 
two-component, negative feedback loop, X→R––| X, can 
exhibit damped oscillations to a stable steady state but not 
sustained oscillations [43]. Sustained oscillations require at 
least three components: X→Y→R––| X. The third 
component (Y) introduces a time delay in the feedback 
loop, causing the control system repeatedly to overshoot 
and undershoot its steady state. 

In Figure 2a (column 1), we present a wiring diagram for a 
negative-feedback control loop. For intermediate signal 
strengths, the steady-state response of the control system is 
unstable, and the system executes sustained oscillations 
(column 2) in the variables X(t), YP(t) and RP(t). In the 
signal-response curve (column 3), we plot RP,ss as a function 
of S, noting that the steady-state response is unstable for 
Scrit1<S<Scrit2. Within this range, RP(t) oscillates between RPmin 
and RPmax (the lower and upper filled circles, respectively). 
In the terminology introduced earlier, Scrit1 and Scrit2 are 
bifurcation points, where the steady-state response changes 
its stability and oscillations arise by a generic mechanism 
called a ‘Hopf bifurcation.’ As S moves away from either 
bifurcation point, the amplitude of oscillation increases.  

Negative feedback has been proposed as a basis for 
oscillations in protein synthesis [44], MPF activity [45], 
MAPK signaling pathways [46], and circadian rhythms 
[47,48,49•].  

Using similar theoretical ideas about negative feedback 
oscillators, Elowitz and Leibler [50] designed an artificial 
genetic network consisting of three operons that repressed 
one another in a loop. In order to satisfy the theoretical 
expectations for sustained oscillations, these authors 
engineered the three proteins to be unstable, with roughly 
equal half-lives. Individual bacteria containing these 
plasmids showed periodic expression of a fluorescent 
reporter protein, qualifying this case as a literal ‘blinker’. 

Positive and negative feedback: oscillators 
Oscillations often arise in systems containing both positive 
feedback (autocatalysis) and negative feedback 
(Figure 2b,c). The positive-feedback loop creates a bistable 
system (a toggle switch) and the negative-feedback loop 
drives the system back and forth between the two stable 
steady states. Oscillators of this sort come in two varieties. 

Activator-inhibitor oscillators 
In Figure 2b, R is created in an autocatalytic process, and 
then it promotes the production of an inhibitor, X, which 
either slows down R production or speeds up R removal. 
First, R builds up, then comes X to force R back down, 
then X disappears and R can rise again. 

In the second column of Figure 2b, we plot a ‘phase 
portrait’ of the activator-inhibitor oscillator, illustrating the 
notion that the negative-feedback loop drives the bistable 
system back and forth between its two steady-state 
regimes. First, consider X to be the signal and R to be the 
response, and plot (red curve) Rss as a function of X. We get 
an S-shaped signal-response curve, indicating that the 
network functions as a toggle switch. For intermediate 
values of X, the control system is bistable (Rss can be either 
small or large). Conversely, plotting Xss (response) as a 
function of R (signal), we get a simple linear response curve 
(blue). Mathematicians refer to these curves as the R-
nullcline (dR/dt = 0, red) and the X-nullcline (dX/dt = 0, 
blue). Where the two curves intersect (ο) is a steady state 
for the full system, but the control system does not settle 
on this steady state because it is unstable. Instead, the 
variables, R(t) and X(t), oscillate around the steady state on 
a closed orbit (black curve, called a stable limit cycle). Such 
behavior is called a hysteresis oscillator, and the closed orbit 
is called a hysteresis loop. 

The classic example of an activator-inhibitor system is 
cyclic AMP production in the slime mold, Dictyostelium 
discoideum [51]. External cAMP binds to a surface receptor, 
which stimulates adenylate cyclase to produce and excrete 
more cAMP. At the same time, cAMP-binding pushes the 
receptor into an inactive form. After cAMP falls off, the 
inactive form slowly recovers its ability to bind cAMP and 
stimulate adenylate cyclase again. This mechanism lies 
behind all the curious properties of the cAMP signaling 
system in Dictyostelium: oscillations, relay, adaptation, and 
wave propagation. (For details, see [27].) 



  

Substrate-depletion oscillators 
In Figure 2c, X is converted into R in an autocatalytic 
process. Suppose, at first, X is abundant and R is scarce. As 
R builds up, the production of R accelerates until there is 
an explosive conversion of the entire pool of X into R. 
Then the autocatalytic reaction shuts off for lack of 
substrate, X. R is degraded, and X must build up again 
before another burst of R is produced. 

This is essentially the mechanism of MPF oscillations in 
frog egg extracts [37,52]. MPF is a dimer of a kinase 
subunit, cyclin-dependent kinase 1 (Cdk1), and a 
regulatory subunit, cyclin B. As cyclin B accumulates in the 
extract, it combines rapidly with Cdk1 (in excess). The 
dimer is immediately inactivated by phosphorylation of the 
kinase subunit (X in Figure 2c is cyclin B–Cdk1-P). X can 
be converted into active MPF (R in Figure 2c is the 
unphosphorylated form of cyclin B–Cdk1) by a phosphatase 
called Cdc25 (EP in the figure). Active MPF activates 
Cdc25 by phosphorylating it. The true MPF story is 
considerably more complicated than just described, but in 
broad strokes it is a substrate-depletion oscillator. 

The signal-response curve for this mechanism is plotted in 
column 3 of Figure 2c. The signal, S, is the rate of synthesis 
of substrate X. Low signal gives low response and high 
signal gives high response, as expected. But for S between 
Scrit1 and Scrit2, the steady-state response is unstable and the 
response oscillates between Rmax (upper filled circles) and 
Rmin (lower filled circles). The oscillations are ‘born’ at Hopf 
bifurcations (at Scrit1 and Scrit2), but there is a big difference 
between the Hopf bifurcations in Figure 2c and those in 
Figure 2a. In Figure 2a, the ‘newborn’ limit cycles (close to 
Scrit) are stable, whereas in Figure 2c they are unstable (as 
indicated by the open circles). As S departs from Scrit, the 
amplitude of the unstable limit cycle grows quickly, until 
the branch of unstable limit cycles connects smoothly with 
the branch of large amplitude, stable limit cycles (denoted 
by filled circles). To distinguish between these two 
possibilities, the bifurcations in Figure 2a are called 
‘supercritical Hopfs’, and the ones in Figure 2c are called 
‘subcritical’. 

The distinction between super- and subcritical Hopf 
bifurcations has important physiological consequences. 
Look again at Figures 2a and c, and let us imagine that 
signal strength S is being reduced slowly from 8 to 4 in 
Figure 2a and from 0.4 to 0.2 in Figure 2c. In both cases, we 
pass a Hopf bifurcation at Scrit2. In case 2a, it is a 
supercritical Hopf bifurcation, and the oscillatory solutions 
appear, at first, with small amplitude, perhaps too small to 
generate a useful response. On the other hand, in case 2c, 
as S passes the subcritical Hopf bifurcation, stable 
oscillations of large amplitude appear abruptly. The control 
system immediately generates a large and robust response. 
When S is being changed in the opposite direction, the 
large amplitude periodic solutions disappear just as 
abruptly. Hence, subcritical Hopf bifurcations provide a 
general mechanism for hysteretic transitions between a 
stable steady state and a stable, large amplitude oscillation. 
In biophysical control systems, where membrane potential 

oscillations can be measured with great accuracy, it is easy 
to distinguish the difference between sub- and supercritical 
Hopf bifurcations (e.g. [53]). 

Complex networks: the cell cycle control system 
The signal-response elements we have just described, 
buzzers, sniffers, toggles and blinkers, usually appear as 
components of more complex networks (see, for example, 
[7–11,12••]). Being most familiar with the regulatory 
network of the eukaryotic cell cycle, we use that example to 
illustrate the issues involved in modeling realistic wiring 
diagrams. 

A generic wiring diagram for the Cdk network regulating 
DNA synthesis and mitosis is presented in Figure 3a. The 
network, involving proteins that regulate the activity of 
Cdk1–CycB heterodimers, consists of three modules that 
oversee the G1/S, G2/M and M/G1 transitions of the cell 
cycle. The G1/S module is a toggle switch, based on mutual 
inhibition between Cdk1–cyclin B and CKI, a 
stoichiometric cyclin-dependent kinase inhibitor. The 
G2/M module is a second toggle switch, based on mutual 
activation between Cdk1–cyclin B and Cdc25 (a 
phosphatase that activates the dimer), and mutual 
inhibition between CDK1–cyclin B and Wee1 (a kinase 
that activates the dimer). The M/G1 module is an oscillator, 
based on a negative-feedback loop: Cdk1–cyclin B activates 
the anaphase-promoting complex (APC), which activates 
Cdc20, which degrades cyclin B. 

The ‘signal’ that drives cell proliferation is cell growth: a 
newborn cell cannot leave G1 and enter the DNA 
synthesis/division process (S/G2/M) until it grows to a 
critical size [54]. Hence, our signal-response curve is a plot 
of steady-state activity of Cdk1–cyclin B as a function of 
cell size (Figure 3b). The signal-response curve of the full 
network is complicated indeed, but it clearly has inherited 
the basic characteristics of its component modules. We can 
discern the typical S-shaped bistability curves of the G1/S 
and G2/M modules and the oscillatory solutions of the 
negative-feedback loop (the M/G1 module). The oscillatory 
solutions, generated by the negative-feedback loop, interact 
with the bistability curve of the G2/M module to create an 
‘infinite-period’ bifurcation at cell size = 1.25. At this 
bifurcation (SN/IP), a stable steady state gives way to a 
large-amplitude periodic solution, and the period of 
oscillation is very long, for cell size close to 1.25. As size 
increases above 1.25, the period of oscillation drops 
dramatically. 

In Figure 3b (red curve), progress through the cell cycle is 
viewed as a sequence of bifurcations. A small newborn cell 
(size = 0.73) is attracted to the stable G1 steady state (very 
low activity of Cdk1–cyclin B). As it grows, it eventually 
passes the saddle-node bifurcation (SN3) where the G1 
steady state disappears, and the cell makes an irreversible 
transition into S/G2 (moderate activity of Cdk1/cyclin B). It 
stays in S/G2 until it grows so large that the S/G2 steady 
state disappears, giving way to an infinite-period oscillation 
(SN/IP). CycB-dependent kinase activity soars, driving the 
cell into mitosis, and then plummets, as CycB is degraded 
by APC–Cdc20. The drop in Cdk1–cyclin B activity is the 



  

signal for the cell to divide. Cell size drops from 1.46 to 
0.73, and the control system is returned to its starting point, 
in the domain of attraction of the G1 steady state.  

Signaling in space 
So far, we have considered only time-dependent signaling. 
But spatial signaling also plays important roles in cell 
physiology (e.g. cell aggregation, somite formation, cell 
division plane localization, etc.). Interestingly the same 
mechanism (autocatalysis plus negative feedback) that 
creates oscillations (broken symmetry in time) can also 
create spatial patterns (broken symmetry in space) [55,56]. 
Two sorts of patterns may arise. If the inhibitor (or 
substrate) diffuses much more rapidly than the activator, 
activator piles up in local regions of space, forming steady-
state (time-independent) patterns. On the other hand, 
when the diffusion constant of the inhibitor (or substrate) is 
about the same as (or less than) the diffusion constant of 
the activator, traveling waves of ‘activation’ propagate 
through the medium. 

Steady-state patterns (commonly called ‘Turing patterns’) 
have been proposed for many time-independent, spatially 
periodic patterns in biology, such as animal coat patterns, 
leaf rudiment positioning, hair follicle distributions, and so 
on [57]. Traveling waves of cyclic AMP in fields of 
Dictyostelium amoebae govern the processes of aggregation, 
slug motility and fruiting [58,59]. 

Meinhardt and de Boer [60••] have recently presented an 
elegant model of division plane localization in Escherichia 
coli. In this model, FtsZ protein bound to the cell 
membrane promotes further FtsZ binding, at the expense 
of freely diffusible FtsZ in the cytoplasm. By Turing-type 
symmetry breaking, these interactions would create FtsZ 
rings at arbitrary positions along the bacterial axis. 
Interactions among Min proteins (C, D and E) create a 
pole-to-pole oscillating wave, which biases the FtsZ ring to 
form in the center of the cell. 

Conclusions 
The life of every organism depends crucially on networks 
of interacting proteins that detect signals and generate 
appropriate responses. Examples include chemotaxis, heat 
shock response, sporulation, hormone secretion, and cell-
cycle checkpoints. Although diagrams and informal hand-
waving arguments are often used to rationalize how these 
control systems work, such cartoons lack the precision 
necessary for a quantitative and reliable understanding of 
complex regulatory networks. To reprogram cellular control 
systems to our own specifications, we will need more exact, 
engineering-style representations of their wiring diagrams 
and governing equations.  

Mathematical modeling and computer simulation of protein 
networks is a tool for formulating mechanistic hypotheses 
precisely and for deriving with confidence their 
physiological implications. In this review, we have shown 
how to create mathematical representations (nonlinear 
differential equations) of some simple signal-response 
elements, and how certain feedback and feed-forward 
signals can create diverse types of responses: sigmoidal 

switches (buzzers), transient responses (sniffers), hysteretic 
switches (toggles), and oscillators (blinkers). From these 
components, nature has constructed regulatory networks of 
great complexity. With accurate mathematical 
representations of the individual components, we can 
assemble a computational model of any such network. By 
numerical simulation, we can compute the expected output 
of the network to any particular input. 

A crucial point of contact between physiologists and 
applied mathematicians is the input–output relationship of 
a control system — what experimentalists call a signal-
response curve, and theoreticians call a one-parameter 
bifurcation diagram. From the physiologist’s perspective, a 
signal-response curve summarizes the behavior of the 
biological control system. From the mathematician’s 
perspective, a one-parameter bifurcation diagram 
summarizes the general, qualitative properties of solutions 
of a set of nonlinear differential equations. The theory of 
bifurcations assures us that there are only a few types of 
signal-response relationships, most of which have appeared 
in our examples. Irreversible transitions are associated with 
saddle-node bifurcations (Figure 1e). Oscillations arise at 
Hopf bifurcations (Figure 2a), and infinite-period 
bifurcations (Figure 3b). No matter how complicated the 
network or how rich its behavior, the signal-response curve 
can always be decomposed into these three bifurcations and 
a few others . 

For the community of scientists to develop the 
sophisticated interplay of theory and experiment that will 
be needed to understand and manipulate molecular 
regulatory systems underlying cell physiology, we will first 
have to learn to communicate. Theoreticians must develop 
the vocabulary and intuition associated with genes, proteins 
and metabolites. And experimentalists must come to terms 
with differential equations, limit cycles and bifurcation 
diagrams. We hope this review will facilitate many new and 
fruitful dialogs. 

Update 
Recent work includes an elegant theoretical and 
experimental study of NF-κB signaling [61••] and methods 
for deducing a molecular wiring diagram from a system’s 
transient response to small disturbances [62•,63•].    
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Signal-response elements. In this tableau, the rows correspond to (a) linear response, (b) hyperbolic response, (c) sigmoidal response, 
(d) perfect adaptation, (e) mutual activation, (f) mutual inhibition and (g) homeostasis. The columns present wiring diagrams (left), rate curves 



  

(center) and signal-response curves (right). From each wiring diagram, we derive a set of kinetic equations, which are displayed in the text (cases 
a, b and c) or in Box 1 (all other cases). The graphs in the center and right columns are derived from the kinetic equations, for the parameter 
values given in Box 1. In the center column (of most rows), the solid curve is the rate of removal of the response component (R or RP, depending 
on the context), and the dashed lines are the rates of production of the response component for various values of signal strength (the value of S is 
indicated next to each curve). The filled circles, where the rates of production and removal are identical, represent steady-state values of the 
response. In the right column, we plot the steady-state response as a function of signal strength. Row (d) is exceptional: both production and 
removal depend on signal strength, in such a fashion that the steady-state value of R is independent of S. Hence, the signal-response curve (not 
shown) is flat. Instead, we plot the transient response (R, black curve) to stepwise increases in signal strength (S, red curve), with concomitant 
changes in the indirect signaling pathway (X, green curve). Other symbols: Pi, inorganic phosphate; E, a protein involved with R in mutual 
activation or inhibition; EP, the phosphorylated form of E. In e) and (f), the open circle in the center column and the dashed curve in the right 
column represent unstable steady states. Scrit is the signal strength where stable and unstable steady states coalesce (a saddle-node bifurcation 
point). 
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Oscillatory networks. In this tableau, the rows correspond to (a) negative feedback, (b) activator-inhibitor and (c) substrate-depletion oscillators. 
The columns present wiring diagrams (left), (center) time courses (a) or phase planes (b,c), and ignal-response curves (right). The kinetic 
equations corresponding to each wiring diagram are displayed in Box 1, along with the parameter values for which the other two columns are 
drawn. S, signal; R, response; E, X and Y, other components of the signaling network; EP, phosphorylated form of E; etc. (a) There are two ways 
to close the negative feedback loop: first, RP inhibits the synthesis of X; or second, RP activates the degradation of X. We choose case 2. Center 
column: oscillations of X (black, left ordinate), YP (red, right ordinate) and RP (blue, right ordinate) for S = 2. Right column: the straight line is the 
steady-state response (RP,ss) as a function of S; solid line indicates stable steady states, dashed line indicates unstable steady states. For a fixed 
value of S between Scrit1 and Scrit2, the unstable steady state is surrounded by a stable periodic solution. For example, the solution in the center 
column oscillates between RPmax = 0.28 and RPmin = 0.1. These two numbers are plotted as filled circles (at S = 2) in the signal-response curve to 
the right. Scrit1 and Scrit2 are so-called points of Hopf bifurcation, where small-amplitude periodic solutions are born as a steady state loses stability. 
Center column, (b,c): phase plane portraits for S = 0.2; red curve, (X,R) pairs that satisfy dR/dt = 0; blue curve, (X,R) pairs that satisfy dX/dt = 0; 
open circle, unstable steady state. Right column, (b,c): solid line, stable steady states; dashed line, unstable steady states; closed/open circles, 
maximum and minimum values of R during a stable/unstable oscillation. Scrit1 and Scrit2 are called subcritical Hopf bifurcation points. 



  

Figure 3 
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Cell cycle regulation in eukaryotes. (a) Wiring diagram. Major events of the cell cycle are triggered by a cyclin-dependent kinase (Cdk1) in 
combination with cyclin B (CycB). The active dimer can be inactivated by combination with an inhibitor (CKI) or by phosphorylation of the kinase 
subunit by a kinase called Wee1. The inhibitory phosphate group is removed by a phosphatase (Cdc25). Cdk1-activity can also be destroyed by 
proteolysis of its cyclin partner, mediated by the anaphase-promoting complex (APC) in combination with Cdc20. (b) Signal-response curve. Solid 
black curve, stable steady states; dashed black curve, unstable steady states; filled circles, maximum and minimum of stable limit cycles; open 
circles, maximum and minimum of unstable limit cycles. The solid red curve indicates how the Cdk control system responds to a steady increase in 
cell size. A newborn cell (size = 0.73) starts at the left end of the red curve. As the cell grows, Cdk activity follows the red curve from left to right, 



  

until the cell divides (at size =  1.46) and the process starts over again. SN1, SN2 and SN3, saddle-node bifurcation points; H, Hopf bifurcation 
point (subcritical); SN/IP, saddle-node/infinite-period bifurcation point. 



  

 
 

Box 1. Mathematical models of signal-response systems. 

Figure 1d. Perfectly adapted 
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Observe that Rss is independent of S. 

Figure 1e. Mutual activation 

RkSkREk
dt
dR

21P0 −+= )(  

),,,()( 434 JJkRkGRE 3P =  
Figure 1f. Mutual inhibition 
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Figure 1g. Negative feedback: homeostasis 
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Figure 2a. Negative feedback oscillator 
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Figure 2b. Activator inhibitor 
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Figure 2d. Substrate depletion 
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Parameter sets 

1A k0 = 0.01, k1 = 1, k2 = 5 

1B k1 = k2 = 1, RT = 1 

1C k1 = k2 = 1, RT = 1, Km1 = Km2 = 0.05 

1D k1 = k2 = 2, k3 = k4 = 1 

1E k0 = 0.4, k1 = 0.01, k2 = 1, k3 = 1, k4 = 0.2, J3 = J4 = 0.05 

1F k0 = 0, k1 = 0.05, k2 = 0.1, k2’ = 0.5, ,k3 = 1, k4 = 0.2, J3 = 
J4 = 0.05 

1G k0 = 1, k2 = 1, k3 = 0.5, k4 = 1, J3 = J4 = 0.01 

2A k0 = 0, k1 = 1, k2’ = 10, k2 = 0.01, k3 = 0.1, k4 = 0.2, k5 = 0.1, k6 = 
0.05, YT = 1, RT = 1, Km3 = Km4 = Km5 = Km6 = 0.01 

2B k0 = 4, k1 = 1, k2 = 1, k2' = 1, k3 = 1, k4 = 1, k5 = 0.1, k6 = 0.075, 
J3 = J4 = 0.3 

2C k0' = 0.01, k0 = 0.4, k1 = 1, k2 = 1, k3 = 1, k4 = 0.3, J3 = J4 = 0.05 



  

 

 
 
 
 
 
 
 
 
 
 


