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Notch signaling: the demise of elegant simplicity
Tom Kadesch
Notch signaling can be viewed as an elegantly simple pathway

that begins when the Notch receptor binds ligand, and ends

when the Notch intracellular domain enters the nucleus and

activates transcription. However, it is becoming increasingly

clear that this core pathway is subject to a wide array of

regulatory influences, from those that affect ligand–receptor

interactions to those that govern the choice of Notch target

genes. Even Notch ligands are now being scrutinized with

respect to the possibility that they, too, function in the nucleus.

A complete understanding of Notch signaling therefore

requires us to look well beyond the core pathway.
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Abbreviations
BMP b
urrent O
one morphogenetic protein
CSL C
BF-1, suppressor of hairless, LAG-1 (also known as

RBP-Jk)
HES h
airy enhancer of split
HRT h
airy related transcription factor (also known as HERP,

HESR and Hey)
MeCP2 m
ethyl-cytosine binding protein-2
MINT M
sx2-interacting nuclear target protein
NIC N
otch intracellular domain
NIC N
otch intracellular domain
NICD N
otch intracellular domain
NRARP N
otch regulated ankyrin repeat protein
SMRT s
ilencing mediator for retinoid and thyroid-hormone receptors
TGF tr
ansforming growth factor
Introduction
The Notch proteins are cell-surface receptors, the sig-

naling activities of which regulate a variety of develop-

mental processes. Identified initially in Drosophila —

where the first mutant allele gave rise to a notched

wing — Notch proteins have since been found in vir-

tually all metazoans and have been studied extensively in

flies, worms and mammals. Notch’s role in lateral inhibi-

tion during Drosophila neurogenesis gave rise to the view
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that Notch signaling typically regulates binary cell-fate

choices, relegating cells to ‘default’ developmental path-

ways. Although there are many additional examples in

which Notch signaling functions to restrict particular fate

choices, Notch signaling is now known to promote the

development and/or proliferation of some cell types and

to influence multiple developmental steps within a given

lineage. As with most signaling pathways, the effects of

Notch signaling are exquisitely context and cell type-

dependent. Depending on the cell, Notch can act as an

oncogene or function as a tumor suppressor. The pathway

has been the subject of several excellent reviews cover-

ing its various roles in development and cancer [1–6].

This review will focus on our understanding of the

mechanisms by which activity of the core signaling

pathway is modulated.

The core pathway
The Notch proteins (Notch1–Notch4 in vertebrates) are

single-pass receptors that are activated by the Delta (or

Delta-like) and Jagged/Serrate families of membrane-

bound ligands. They are transported to the plasma

membrane as cleaved, but otherwise intact polypeptides.

Interaction with ligand leads to two additional proteo-

lytic cleavages that liberate the Notch intracellular

domain (NICD, ICD, NIC or NIC) from the plasma

membrane [7,8]. NICD enters the nucleus, where it

interacts with the DNA binding protein CSL [CBF

(C-promoter binding factor)-1, Suppressor of Hairless,

LAG-1; also known as RBP-Jk (recombination signal

binding protein Jk) [9]]. In the absence of NICD,

CSL represses transcription through interactions with

a co-repressor complex, containing a histone deacetylase

[10–12]. Upon entering the nucleus, NICD displaces the

co-repressor complex from CSL and replaces it with a

transcriptional activation complex that includes NICD,

Mastermind, the histone acetyltransferase p300 and,

possibly, PCAF p300/CBP [CREB (cyclic AMB response

element binding protein) binding protein]-associated

factor [13–17]. Notch signaling, thus, converts CSL from

a repressor to an activator, leading to the transcription of

target genes. The target genes include members of the

Hes and HRT/HERP/Hey families of transcriptional

repressors, therefore Notch signaling is often viewed

as a transcription cascade.

The core pathway can be divided into three basic steps:

activation of the receptor, generation of active NICD, and

stimulation of target gene transcription (Figure 1). This

review will focus on recent advances that have elucidated

how the activity of each step of the core pathway can be

regulated.
www.sciencedirect.com
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Figure 1
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The core Notch signaling pathway. The three basic steps include: (1) receptor activation, (2) the generation of active NICD and (3) the

activation of downstream targets. The proteins and molecules that are now known t o regulate each step are shown in the boxes.
Step one: regulating receptor activation
The most common, and conceptually, the simplest level

of control is through the cell type-specific expression of

Notch ligands. Irrespective of whether or not a cell

expresses Notch proteins, signaling should not occur if

a neighboring cell does not express ligand. With the

exception of Jagged1 in vertebrates [18,19], little is

known about the signals and transcription factors that

regulate ligand transcription; however, simple ligand

expression is not the only determinant of Notch signal

strength. Recent experiments have improved our under-

standing of the importance of ligand ubiquitylation and

Notch glycosylation in modulating the level of receptor

activation. Notch activation through atypical ligands has

also been described.

Ligand internalization

The activity of Notch ligands can be influenced by

proteins that regulate their internalization and degrada-

tion. Neuralized, a gene that promotes Notch activity,

encodes an E3 ubiquitin ligase that promotes the inter-

nalization and degradation of Delta [20–22]. A similar

activity has now been ascribed to the protein encoded by

Zebra fish mind bomb [23]. The idea that ligand inter-

nalization stimulates Notch signaling was provided initi-

ally by the analysis of Drosophila shibire mutants, which

phenocopy certain Notch loss-of-function mutations [24].

Shibire encodes the fly homologue of dynamin, a protein

that helps to process endocytic vesicles, and thus links
www.sciencedirect.com
ligand activity to ligand endocytosis. Together, these and

other observations [25] support a model in which ligand

internalization promotes the shedding of the Notch extra-

cellular domain from a neighboring cell, thereby promot-

ing the subsequent proteolytic cleavages that generate

NICD (Figure 2). Asymmetric cell divisions can lead to

the unequal distribution of Neuralized protein (in addi-

tion to the Notch inhibitor Numb) in daughter cells,

amplifying the differences in those cells’ abilities to send

and receive a Notch signal [26]. The molecular details

that link the ubiquitin ligase activity of Neuralized and

Mind Bomb to ligand internalization are yet to be defined.

Notch glycosylation

Notch signaling is also influenced by receptor glycosyla-

tion [27]. The fringe genes (lunatic fringe, manic fringe

and radical fringe, in vertebrates) encode glycosyltrans-

ferases (specifically, b1,3 N-acetylgucosaminyltrans-

ferases) that modulate Notch’s response to its ligands

[28]. The glycosylation of Drosophila Notch or vertebrate

Notch1 by Fringe leads to differential activation by the

two classes of ligand —inhibition of Serrate/Jagged-

mediated signaling and activation of signaling through

Delta [29]. The actions of Fringe depend on prior O-

fucosylation (by O-FucT-1 in mammals and Nti/OFUT1

in flies), a modification that is absolutely required for all

Notch signaling [30–32]. Thus, while the initial modifica-

tion of Notch by fucose is necessary for all ligand-induced

signaling, subsequent modifications by the Fringe
Current Opinion in Genetics & Development 2004, 14:506–512
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Figure 2
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A model for the generation of active NICD. In this model, the

internalization of ligand serves to physically pull the Notch extracellular

domain from the surface of the receiving cell. This allows access of

the ADAM family protease TACE and subsequent cleavage by the

g-secretase complex, liberating NICD from the plasma membrane.
proteins modulate Notch’s response to individual ligands.

These modifications directly influence Notch-ligand

interactions. Although most of the EGF repeats contain

consensus sites for O-FucT-1modification, recent work

has shown that the glycosylation of one particular repeat

(EGF12 in Drosophila Notch) is necessary for the inhi-

bitory effect of Fringe on Serrate–Notch signaling [33].

Calcium

Notch signaling also responds to levels of extracellular

calcium. It has been known for some time that the EGF

repeats found in the extracellular domains of both Notch

and its ligands bind calcium ions. Indeed, depletion of

calcium from the medium of tissue-culture cells leads to a

potent ligand-independent activation of the Notch recep-

tor, presumably by altering the structure of the extra-

cellular domain [34]. Work in the chick has now

implicated Notch in the establishment of left–right asym-

metry during development [35��]. In this case, the penul-

timate signal appears to be asymmetrical activation of the

H+/K+-ATPase, which, in turn, establishes an asymmetric

gradient of calcium ions to which Notch responds. The

strength of the Notch signal correlates positively with the

anticipated concentration of extracellular calcium, a cor-

relation that that can be recapitulated with cultured cells

[35��].

F3/Contactin

The GPI-linked neural cell recognition molecule F3/

Contactin is not a member of the DSL (Delta/Serrate/
Current Opinion in Genetics & Development 2004, 14:506–512
Lag-2) family of Notch ligands. Nevertheless, it has been

shown recently to be a functional ligand for Notch and to

mediate certain aspects of Notch-mediated promotion of

oligodendrocyte differentiation [36��]. NB-3, an F3/Con-

tactin related molecule that is expressed by neurons, can

similarly promote oligodendrocyte differentiation [37].

Interestingly, although g-Secretase inhibitors and domi-

nant-negative forms of Notch (and of Deltex) can inhibit

the activity of F3/Contactin, dominant-negative forms of

CSL cannot. This raises the possibility that F3/Contactin,

although capable of generating nuclear NICD, works

through an additional, novel pathway that may or may

not collaborate with the core NICD/CSL pathway.

Although CSL-independent pathways have been pro-

posed for other developmental effects of Notch [38,39],

a molecular definition of such pathways remains elusive.

Proteolyzed ligands

Drosophila Delta can be proteolytically cleaved by the

ADAM (A disintegrin and A metalloprotease) family

protease Kuzbanian, leading to its release from the plasma

membrane. Genetic studies indicate that Kuzbanian

enhances Notch signaling in flies, suggesting that both

membrane-bound and cleaved Delta can activate the

pathway [40,41]. Lending support to this idea, studies

with C. elegans indicate that DSL-1, a protein that lacks

a predicted transmembrane domain, can substitute for

the typical membrane-bound Notch ligand LAG-2 in

specifying vulval precursor cells [42��]. Although the

extracellular portion of Drosophila Delta can mimic

membrane-bound Delta in a neurite outgrowth assay

using cultured cells [40], subsequent experiments have

shown that extracellular forms of Notch ligands typically

antagonize signaling [43]. The reason why soluble ligands

promote signaling in some contexts but not others

remains to be determined. Recent studies indicate that

Notch ligands can be processed further by the presenilin–

g-secretase complex, resulting in a portion of the intra-

cellular domain ending up in the nucleus, possibly affect-

ing transcription [44�,45]. Hence, Notch signaling might

have to be viewed, not just from the point of view of the

cell that activates the core pathway, but also from the

point of view of events that may occur in the ligand-

expressing cell.

Step two: regulating the level or
activity of NICD
When ligand has rendered the Notch receptor susceptible

to cleavage, initially by TACE (TNF-a converting

enzyme) and then by the g-Secretase complex, NICD

is generated [7,8]. Although individual roles for the com-

ponents of the g-Secretase complex have now been

described [46,47], it is not known if the complex is subject

to active regulation per se. The same is true for TACE.

Nevertheless, the level and activity of NICD can be

modulated through protein–protein interactions and by

proteosome-mediated degradation.
www.sciencedirect.com
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MINT

MINT (Msx2-interacting nuclear target protein) was

identified in a two-hybrid screen using CSL (RBP-J) as

bait [48��]. MINT interferes with the ability of NICD to

bind CSL in vitro and is able to inhibit NICD-mediated

transcriptional activation in cultured cells, suggesting that

MINT is an inhibitor of Notch signaling in vivo. It

remains to be determined whether MINT functions like

Hairless, a Drosophila protein that recruits co-repressors to

Su(H), the fly homologue of CSL [49]. MINT expression

is found in the testis, brain, spleen, lung, liver and kidney,

and mouse embryos lacking the gene die at around

embryonic day 12, displaying a variety of developmental

defects. Fetal liver cells from both wild type and MINT�/�

embryos can generate both B and T cells in irradiated

mice. However, MINT�/� cells generate higher numbers

of marginal zone B cells at the expense of follicular B cells

in the recipient mice. This is consistent with the idea that

Notch signaling regulates the follicular- versus marginal-

zone B-cell fate choice and that MINT is a negative

regulator of Notch in this setting. The roles of MINT in

other cell types are yet to be demonstrated.

NRARP

NRARP (Notch regulated ankyrin repeat protein) was

identified in a screen of RNAs induced by Notch [50,51].

The protein contains two ankyrin repeats and inhibits

Notch activity, either through the formation of an inhi-

bitory complex with CSL–NICD and/or by destabilizing

NICD. Forced expression of NRARP in hematopoietic

progenitors blocks T-cell development, consistent with it

being an inhibitor of Notch signaling in vivo [52].

Numb

Numb has long been known to bind Notch and to

antagonize Notch signaling cell autonomously [53–55],

yet the precise mechanism by which Numb functions has

been elusive. Recent studies have invoked the involve-

ment of a-Adaptin [56], a protein that promotes endo-

cytosis, and the E3 ubiquitin ligase Itch [57]. The

requirement of a-Adaptin and its physical interaction

with Numb suggest a mechanism whereby Numb targets

the intact Notch receptor for endocytosis, thus reducing

its concentration at the plasma membrane. By contrast,

the involvement of Itch and its physical interaction with

Numb suggests a distinct mechanism, whereby Numb

targets Notch for proteolysis. The association with Itch is

also consistent with the observation that Numb can

inhibit the activity of NICD, which is not found on the

plasma membrane.

Step three: regulating downstream
targets and effectors
Once in the nucleus and able to bind CSL, NICD directs

the formation of a multi-protein complex that activates

transcription. Although several putative direct target

genes have been identified, many important questions
www.sciencedirect.com
are still unanswered. For example, transcriptional activa-

tion by NICD is cell type-dependent, such that only a

subset of Notch’s primary targets may be activated when

cells encounter ligand [58]. The mechanisms that control

this selectivity are unknown. In addition, although the

half-life of nuclear NICD is relatively short (1–1.5 h), due

to the action of the ubiquitin ligase Sel-10 [59], there

appears to be a link between NICD phosphorylation and

degradation [14]. The details of this link also remain

obscure. Finally, NICD may activate transcription of

several genes, but little is known about which of those

genes is/are responsible for the phenotypic effects of

Notch signaling. In the case of Notch inhibiting neuronal

development, it appears that the target genes Hes1 and

Hes5 mediate many and perhaps all of the Notch effects

[60]. Knockout studies have suggested additional links

between Notch and known targets in the development of

a variety of tissues and cell types. These include links

between Notch and HES-1 in pancreatic development

[61–63], Notch and its target Hey2 in cardiac develop-

ment [64–66], and Notch and the targets Hey1 and Hey2

in vascular development [67]. Notch’s ability to block

adipogenesis in a cell culture model can be mimicked by

HES-1, suggesting that maintenance of HES-1 expres-

sion might account for most of Notch’s activity in that

particular setting [68]. The IL-4 gene has been reported

to be a direct target of Notch, which may explain Notch’s

ability to promote the formation of TH2 helper T cells

[69�]. The direct targets that mediate Notch’s other

effects on T-cell development and its ability to inhibit

muscle development remain unknown.

The molecular components of the CSL–co-repressor

complex [10–12] and the CSL–NICD-co-activator com-

plex [13–17] have been relatively well defined. Master-

mind, a component of the co-activator complex, binds the

p300 histone acetyltransferase and, somehow, also pro-

motes NICD phosphorylation and degradation [14]. It

remains to be determined to what extent the co-repressor

and co-activator complexes cooperate with additional

DNA binding proteins to affect the overall activity of

Notch target genes in vivo. Indeed, studies of T cells

that are devoid of CSL (RBP-J) argue that CSL does

not appreciably repress transcription in the absence of

NICD [70�].

MeCP2

MeCP2 (Methyl-Cytosine Binding Protein) is a protein

that binds methylated CpG islands and recruits co-repres-

sors to DNA. In Xenopus, MeCP2 interacts with the co-

repressor SMRT (silencing mediator for retinoid and

thyroid-hormone receptors) to regulate xHairy2a, a pri-

mary target of NICD [71��]. Notch signaling leads to the

release of MeCP2 from the xHairy2a promoter, possibly

by displacing SMRT from CSL and weakening the

interactions of the MeCP2–SMRT complex with the

promoter. Paradoxically, a mutant form of Xenopus
Current Opinion in Genetics & Development 2004, 14:506–512
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MeCP2 that cannot bind SMRT (this mutation is anal-

ogous to that found in certain Rett Syndrome patients) is

not released upon Notch signaling, and this correlates

with diminished induction of xHairy2a transcription. The

functional interaction between MeCP2 and Notch is not

likely to be applicable to all promoters that bind CSL,

butt this study illustrates the complexity of interactions

that might occur at Notch-responsive promoters and

how other pathways may converge to affect Notch

phenotypes.

SMADs

Two recent reports have provided a molecular explana-

tion for at least some of the crosstalk between the Notch

and TGF-b signaling pathways. One showed that a low

level of Notch signaling is required for BMP4-mediated

inhibition of myogenesis [72�]. BMP4 is able to activate

transcription of the Notch target gene Hey1, partly

through an ability of CSL to recruit activated SMAD1

to the promoter via NICD. The other report showed

that the same is also true for TGF-b, which activates

the Hes-1 promoter through the CSL-dependent recruit-

ment of SMAD3 [73]. Thus, BMP and TGF-b can feed

into the Notch pathway by augmenting the transcription

of Notch target genes.

Perspectives
Our understanding of the Notch signaling pathway has

grown enormously over the past few years. In fact, a bona
fide role for Notch cleavage and for nuclear NICD was not

fully appreciated until 1998 [74–76]. In a relatively short

time period, the proteins that define the core pathway

have been identified, along with additional proteins that

modulate the pathway. Major issues that have yet to be

fully explored include: the precise mechanism by which

ligand internalization and ubiquitylation promotes recep-

tor activation; the potential role of ligand cleavage in

affecting gene expression in ligand expressing cells and;

the identification of the transcriptional events down-

stream of Notch that govern phenotype. Although several

Notch target genes have been identified, most of these

have yet to be linked to Notch’s specific effects on

differentiation and tumorigenesis. Secondary Notch tar-

gets, such as those regulated by the Hes and HRT/Herp/

Hey families of transcriptional repressors [77], are even

less well characterized. The challenge over the coming

years will be to extend Notch signaling from the core

pathway, downstream towards the proteins that directly

elicit a cell response. Given that the effects of Notch can

be profoundly cell type-dependent, it is likely that the

downstream pathway will not be universal, but will,

instead, be defined by branches and tributaries that might

flow in particular cell types, but not others.
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