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DNA repair defects in colon cancer

Josef Jiricny” and Giancarlo Marra

Defects in DNA-repair pathways lead to an accumulation of
mutations in genomic DNA that result from non-repair or
mis-repair of modifications introduced into the DNA by
endogenous or exogenous agents or by the malfunction of DNA
metabolic pathways. Until recently, only two repair pathways,
postreplicative mismatch repair and nucleotide excision repair,
have been linked to cancer in mammals, but these have been
joined in recent months also by the damage-reversal and
base-excision-repair processes, which have been shown to be
inactivated, either through mutation or epigenetically, in human
cancer.
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Abbreviations

AP abasic (apurinic/apyrimidinic)

APC adenomatous polyposis coli

ATM ataxia telangiectasia mutated

BER base excision repair

EXO1 exonuclease 1

G° 8-oxoguanine

HNPCC hereditary non-polyposis colon cancer
IR ionizing radiation

MBD4 methylated DNA binding protein 4

MGMT  methylguanine methyl transferase
MLH MutL homologue

MMR mismatch repair
MNNG N-methyl-N’-nitro-N-nitrosoguanidine
MNU N-methyl-N-nitrosourea

MSH MutS homologue

MsI microsatellite instability
MSI-H high microsatellite instability
MSI-L low microsatellite instability
MTH MutT homologue

MYH MutY homologue

OGG1 8-oxoguanine DNA-glycosylase
PMS post-meiotic segregation
Introduction

The genomic DNA of all organisms is constantly mod-
ified by exogenous and endogenous reagents [1]. In
addition, some pathways of DNA metabolism such as
DNA replication also modify the genetic material by

introducing errors into newly synthesized strands. In
order for the DNA to fulfil its role as a template for
transcription, or to serve as the genetic blueprint that is
passed onto the next generation, the cells of all organisms
have evolved highly sophisticated and efficient machi-
neries that maintain the integrity of their genomes. It
could logically be anticipated that the malfunction of any
repair pathway, be it damage reversal, base excision repair
(BER), nucleotide excision repair, mismatch repair
(MMR) or recombination repair [1], would lead to an
increased frequency of mutations and thus to cancer in
mammals. However, this does not appear to be the case:
only a few genes that encode DNA repair enzymes have
been shown to be mutated in human malignancies to
date.

Malfunction of MMR in humans was first identified in
1993, in tumors of the colon, endometrium, ovary and
other organs targeted by the hereditary non-polyposis
colon cancer syndrome (HNPCC) (see [2-6] for recent
reviews). Since that time microsatellite instability (MSI),
the hallmark of MMR deficiency, has also been detected
in many sporadic colon tumors, where it appears to be
linked to a transcriptional silencing of the ZMLHI (where
MLH stands for MutlL, homologue) gene [7]. The reasons
underlying the tissue tropism of MMR malfunction are
unclear. The principal task of MMR is to remove nucleo-
tides that have been misincorporated into the newly
synthesized strand by the replicative DNA polymerase
and that have escaped detection by the proofreading
activity of this enzyme complex. However, the MMR
system also appears to be involved in post-replicative
DNA-damage signaling, and it is this role that might help
explain why the transformation process linked with MMR
defects preferentially affects cells of rapidly proliferating
tissues such as the colonic epithelium. This topic will be
the major subject of discussion in the following para-
graphs.

Recently, two more DNA repair enzymes have been
implicated in colon cancer in humans. First, the gene
encoding methylguanine methyl transferase (MGMT), a
protein that removes methyl and other small alkyl groups
from the Oﬂ—position of guanine (reviewed in [8]), has
been shown to be transcriptionally silenced in some colon
tumors (reviewed in [9]). The second example is MurY
homologue (MYH) [10], a homologue of the E. coli MurY
gene, which encodes a DNA-glycosylase responsible
for the removal from DNA of adenines mispaired with
8-oxoguanine (G°). MYH mutations have been identified
in patients with multiple colorectal adenoma syndrome
[11°°,12°°]. Most recently, disruption of the murine
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methylated DNA binding protein 4 (Mbd4) gene, which
encodes a DNA-glycosylase that removes thymine and
uracil from mispairs with guanine [13,14°], was shown to

result in an increased frequency of intestinal polyps in
Mbd4™~Ap™™ mice [15°°,16].

All this evidence points to a link between DNA repair,
transcriptional silencing and cancer, where the MMR
system plays a pivotal role. In the following paragraphs
we shall attempt to elucidate the nature of this link.

Mismatch repair defects

The study of mismatch-repair defects in cancer has
received a great deal of attention since the discovery
mentioned above of a connection between HNPCC
and germline mutations in MMR genes. As this topic
has been extensively reviewed in the recent literature
[2-4,6,17], we shall focus here primarily on work with
human cell lines and transgenic mouse models.

The principal players in mammalian MMR are the homo-
logues of the bacterial MutS and MutL. proteins, which
function in the form of heterodimers (Figure 1). Of these,
the key initiation factors are the mismatch binding het-
erodimers MSH2/MSH6 (where MSH stands for MutS
homologue) (MutSa) and MSH2/MSH3 (MutSf). MutSa
binds base/base mismatches and small extrahelical loops
formed as a result of polymerase slippage in microsatel-
lites, whereas MutSp plays only a back-up role in MMR,

Figure 1

recognizing extrahelical loops. Because MSH2 is part of
both heterodimers, cell lines (T'able 1) and mice (Table 2)
lacking this polypeptide have a much stronger mutator
phenotype than those lacking MSH6, and the mutator
phenotype of MSH3-deficient lines is almost undetect-
able in most assays. However, the loss of both MSH6 and
MSH3 brings about a phenotype that is comparable to
that of MSH2-deficient cells or animals [18,19°] and the
functional redundancy is therefore clearly limited to only
the MSH3 and MSHS6 proteins. The situation is less clear
in the case of the Mutl. homologues, which are thought to
act as ‘molecular matchmakers’ between the mismatch
binding factor(s) and the downstream effectors of repair
(i.e. the replication machinery). Although several ortholo-
gues of the MutLL protein have been identified in mammals
(Figure 1), only the MLH1/PMS2 (MutLa) heterodimer
has been shown to function in MMR to date. No role in
mammalian MMR has so far been found for the hMLLH1/
hPMS1 (hMutl.p) heterodimer [20] and Pms1™' mice are
fertile and tumor-free [21]. The MLH1/MLH3 complex
[22°] was predicted to function in MMR by analogy to
yeast [23], but mice with a disrupted M43 gene display a
defect in meiotic recombination rather than in MMR
[24°], and appear not to be cancer-prone, even though
mutations in ZMI.H3 in tumors with high-grade MSI (MSI-
H) have been described [25]. However, Pms]f/fM//ﬁ*/*,
Pms2”=MIh37'=, Pmsl™'~Pms2™'~ and Pmsl™' = Pms2™'~
MIh37'~ mice should be generated, as the phenotypes of
MIh1™'~ and Pms2™'~ animals differ, both in cancer prone-
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Mammalian MSH and MLH, their interactions and their involvement in MMR and meiotic recombination. Dotted arrows represent functional
interactions inferred from studies in yeast or mouse systems but not demonstrated biochemically.
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Table 1
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Colon cancer cell lines with MMR gene defects.

Cell line hMSH2 hMSH6 hMSH3 hMLH1 hPMS2 APC
HCT15/DLD1 * )
LoVo * 1 T *
HCT116 i * T

SW48 * i

LS174T Very weak expression Very weak expression Very weak expression

RKO * i

CO115 Very weak expression * i

LS411 * T *
LS180 Very weak expression Very weak expression

GP5D * 1 T *
VACO481 i * *

Data extracted from www.cephb.fr/gaccc, from [59-61] and from our analyses of protein expression. “Primary homozygous genetic and/or
epigenetic inactivation of the gene; tProtein degradation in the absence of the heterodimeric partner; fSecondary inactivation by homozygous

frameshifts in short repeats of the coding region.

ness (Pmst/f animals do not develop intestinal tumors
[26]) and in meiotic character (MZh1™'~ male and female
mice are sterile, whereas in Pms2~'~ mice only the males
are sterile), and it is important to eliminate the possibility
that the weak contribution of Mlh1/MI1h3 and/or Mlh1/
Pms1 to MMR (if any) is not apparent in the presence of
MIh1/Pms2.

Table 2

The genetic and biochemical findings summarized above
help explain why most HNPCC families carry germline
mutations in the ZMLHI and AZMSHZ genes and why
AMSHG6 is mutated only in atypical HNPCC families
[5]. But as these mutations account for only around
70% of the HNPCC families whose tumors display
MSI-H, the question arises of whether other genes linked

Mouse models with disrupted MMR alleles.

Genotype Fertility Tumor spectrum MSI* References
(male/female)
Msh2~/~ yes/yes Lymphomas, Gl, skin and other tumors yes [62-64]
Msh6~/~ yes/yes Lymphomas, Gl and other tumors no [65]
Msh3~/~ yes/yes Gl tumors at old age yes [18,66]
Msh6~/~ & Msh3~/~ yes/yes Lymphomas, Gl, skin and other tumors yes [18,66]
Msh4='~ no/no None N/A [67]
Msh5~'~ no/no None N/A [68]
Mih1=/~ no/no Lymphomas, Gl, skin and other tumors yes [21,26,69-72]
Pms2~'~ no/yes Lymphoma and sarcoma yes [21,26,73]
Pms1~/~ yes/yes None no [21]
Mih1~'~ & Pms2~/~ no/no Lymphomas, Gl, skin and other tumors yes [26]
MMR genes & Apc Increased Gl tumorigenesist
Mih1~'~ & Apc Min/+ 3x [74]
Msh2~'= & Apc Min/+ 7% [75]
Pms2~'~ & Apc Min/+ 3x [76]
Mih1~/~ & Apc 1638N/+ 10x [72]
Msh2~'~ & Apc 1638N/+ 14x [77]
Msh3~'~ & Apc 1638N/+ 1x [197]
Msh6~'~ & Apc 1638N/+ 6x [19°]
Msh6~/~, Msh3~/~ & Apc 1638N/+ 10x 197
MMR genes & other genes Relevant phenotype
Msh2~'= & Trp53~/~ Embryonic female lethality; male mice viable, but [78]
succumb to tumors very early
Msh2~/~ & Trp53~/~ No embryonic lethality of female mice [79]
Msh2~/~ & Rb*/~ As Msh2~/~, but lymphomas developed later and [80]
were non-metastatic
Msh2~/~ & Tap1~/~ HNPCC-like tumors; no lymphomas [63]

*MSI (high-degree only) was investigated in tumor samples, or normal tissues or culture cells; N/A: data not available; fIncrease in tumor no. Apc
Min/+ mice develop on average 29 intestinal tumors, whereas Apc1638N/+ mice develop on average four intestinal tumors.
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to this syndrome remain to be identified. This is quite
possible, but not guaranteed. The MMR process involves
many polypeptides in addition to those discussed above
[3]. However, most of the others — proliferating cell
nuclear antigen, replication factor C, replication protein
A and polymerase-6 — play key roles in DNA replication.
As inactivating mutations in any one of the genes encod-
ing these polypeptides would be lethal, if these genes
were mutated in HNPCC they would have to carry mis-
sense mutations affecting amino-acid residues in domains
that are only necessary for MMR and not for replication,
which would be very rare. The exonuclease 1 (EXOT) gene,
which encodes a 5 — 3’ exonuclease [27°], has been
reported to be mutated in HNPCC [28], but this issue
needs careful analysis, as the tumors that were studied
lost the mutated allele and retained the wild type one.
"T'hus, although the role of haploinsufficiency of EXOT1 in
colon cancer cannot be ruled out, more evidence has to be
gathered before £XO/ is labeled as an HNPCC gene. It is
likely, however, that we have not yet identified all the
proteins that participate in MMR. Should some of these
be dedicated to MMR only, rather than being involved
also in other, vital DNA metabolic processes, mutations in
the genes encoding these novel proteins might be found
in the HNPCC families that present with MSI tumors but
do not carry mutated ZMSH2, IMLH1 or AMSHG6 genes.

Tumors linked with germline mutations in MMR genes
account for around 4% of all colon cancers. However,
immunohistochemical screening of 1000 unselected
colon tumors (Marra and Jiricny, unpublished observa-
tions) revealed that up to 12% fail to stain for MMR
proteins. Baylin and colleagues were the first to show that
the MMR defect in most of these tumors was linked to
the silencing of the ZMLH1 promoter by cytosine methy-
lation [7]. The tantalizing possibility that this gene might
be imprinted by cytosine methylation, and that this
phenomenon might segregate in HNPCC families like
MMR mutations, cannot be ignored, following the iden-
tification of an HNPCC patient with one methylated
AMLHI allele in DNA isolated from blood and a loss of
heterozygosity of the wild-type allele in the tumor [29°°].
Such cases are probably extremely rare, however, cer-
tainly when compared to the frequency of hypermethyla-
tion of the ZMI.HI promoter in sporadic colon tumors.

Although the DNA of most solid tumors is generally
hypomethylated at CpG dinucleotides in bulk DNA,
many CpG islands, which frequently constitute the pro-
moters of housekeeping genes such as AMLH 1, are hyper-
methylated. Many genes tend to be indiscriminately
silenced by this process, but if only some are lost, and
if these are involved in functions such as growth control
and checkpoint control, then this will provide the tumor
cells with the selective advantage that will help them to
grow out (see [9] for review). The silencing of AMLH 1 will
result in a mutator phenotype and it might be anticipated

that it is this trait that helps cells to mutate oncogenes and
tumor-suppressor genes such as TGFBIIR, IGF2R, E2F4,
TCF4 and other microsatellite-containing genes that
have been shown to be frequently inactivated in HNPCC
tumors with MSI-H (reviewed in [30]). However,
although this mechanism might be at work here, an
alternative scenario might also be operating. MMR-defi-
cient cells have been shown to be resistant to certain
DNA-modifying agents, such as N-methyl-N-nitro-
sourea, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)
and cisplatin (reviewed in [3]). This phenotype has been
ascribed to their failure to arrest at the G,/M checkpoint
following DNA damage. Interestingly, recent studies
show that checkpoint activation requires greater quanti-
ties of MMR proteins than are needed for mismatch
correction [31,32°]. Thus, cells expressing reduced
amounts of hMLH1, for example those with a partially
silenced promoter, would not have a mutator phenotype
but would have a defect in DNA-damage signaling and
apoptotic response. In the colon, the epithelial cells lining
the crypts follow a strict program of division, cell migra-
tion/differentiation and anoikis (epithelial cell exfolia-
tion), which results in the turnover of the crypt cell
population every five days or so. Cells with defective
signaling and apoptosis would be expected to default on
this program and might grow out into adenomas. Support
for this hypothesis has come from studies with Pms2t/~
mice, which were shown to develop a similar number of
thymic lymphomas to wild-type animals following treat-
ment with N-methyl-N-nitrosourea (MNU), but which
displayed an increased incidence of intestinal adenomas
and carcinomas. Importantly, these tumors were not MSI-
H, and thus they apparently did not arise through the loss
of MMR caused by MNU-induced mutations in the wild-
type allele [33].

The involvement of MMR proteins in DNA-damage
signaling has been the topic of much discussion recently
[4,34]. The MMR system appears to be involved in
activating the G,/M cell-cycle checkpoint following treat-
ment of cells with methylating agents [35]. MNNG
treatment has been reported to activate the damage-
dependent Ataxia telangiectasia mutated (A'TM) kinase,
and this response was at least partially dependent on an
active MMR system [36]. It should be pointed out that
the concentration of MNNG used in this study was very
high, such that it could have caused double-strand breaks
in DNA, which are known to activate ATM. It is not clear
why double-strand breaks should signal via MMR. How-
ever, most recent evidence also implicates MMR in the
control of the S-phase checkpoint induced by ionizing
radiation (IR) [37°]. This latter phenomenon, reported to
involve the ATM and CHK2 kinases, might at first sight
appear rather curious, as MMR status has no — or only a
very minor [38] — effect on the sensitivity of cells to IR
treatment, particularly when compared to the 100-fold
difference in sensitivity to methylating agents. But given
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that the MMR system has been shown to address
G°[/adenine mispairs resulting from the incorporation of
dG°MP into the newly synthesized strand during DNA
replication [39°], at least one link between IR and MMR
would appear to exist. In our view, the DNA-damage-
signaling process mediated by MMR proteins merits
careful analysis in the future.

Silencing of methylation damage reversal
process

The MGM'T protein plays an important role in DNA
detoxification by removing small alkyl groups from the
0’-position of guanines. This modification appears to be
largely responsible for the cytotoxicity of methylating
agents, as cells expressing high amounts of MGMT are
resistant to killing by agents such as MNU, MNNG and
temozolomide, whereas cells lacking this activity are
highly sensitive to these drugs [40]. Patient- and organ-
specific fluctuations in the levels of MGM'T are thought
to be responsible for the variation in the efficacy of
chemotherapy with temozolomide [41] and other simple
methylating agents. Low levels of MGM'T" would also be
expected to bring about an increase in spontaneous G—A
transitions, resulting from the mispairing of unrepaired
0’-methylguanines with thymines during DNA replica-
tion. This malfunction was indeed shown to lead to an
increase in activating mutations in the K-7zs oncogene in
a reporter system [42]. Recently, the MGMT gene was
shown to be inactivated by promoter methylation in many
tumor types. In colon cancers, the anticipated increase in
activating K-7zs mutations could again be observed [43].
Importantly, these tumors also carried an increased num-
ber of G — A transitions in the p53 tumor-suppressor
gene [44°], which demonstrates that the effect of MGMT
inactivation is global and that it can therefore affect any
gene where this type of mutation provides the cell with a
selective advantage. Interestingly, many of the tumors
with silenced MGMT genes displayed low microsatellite
instability (MSI-L.) [9]. MSI is linked with the inactiva-
tion of the MMR system and primarily affects microsa-
tellites with mononucleotide and dinucleotide repeats
(MSI-H). However, in some tumors only a few of the
tested markers are mutated and these tumors have there-
fore been assigned the MSI-L. phenotype. The genetic
cause underlying MSI-L is unknown; this phenotype is
not linked with mutations in MMR genes, but the associa-
tion with a silenced MGMT gene is interesting. One could
speculate that the lack of MGMT in a cell brings about a
rise in the number of unrepaired methylated bases in
DNA and thus increases the number of O’-methylgua-
nine/thymine mispairs following DNA replication. These
structures are recognized (but not repaired) by the
hMSH2/hMSH6 mismatch recognition factor, and it is
conceivable that if the MMR factors are sequestered as a
result of this recognition then they might not be available
for postreplicative MMR. In this scenario, the efficiency
of DNA polymerase error repair would be reduced, which
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might lead to MSI-L. Support for this hypothesis could be
said to lie in a study of MNU-treated Mamt™'~Mih1'~
mice [45]: these mice produced tumors that continued to
express hMILHI1, and it could be argued that the reduced
amount of Mlh1 expressed in the cells of these animals
resulted in a faster saturation of the MMR system. How-
ever, the MSI status of the tumors was not determined in
this study. This MMR-saturation hypothesis should
therefore be regarded with some caution, especially as
the existence of the MSI-L phenotype has recently been
questioned [46]. Moreover, the link between 0°-methyl-
guanine and MMR-mediated damage signaling should
not be forgotten.

Base excision repair defects

Modification of DNA bases affects all organisms. The
removal of these aberrant moieties is accomplished by
several DNA glycosylases through cleavage of the glyco-
sidic bonds. This gives rise to abasic (AP) sites. In mam-
malian cells, these non-informative lesions are excised
from DNA by the concerted action of an AP-endonuclease,
which cleaves the sugar-phosphate backbone on the 5'-side
of the AP-site, and polymerase-B, which removes the
baseless sugar-phosphate by B-elimination. The single
nucleotide gap that is thus generated is subsequently filled
in by polymerase-B. The repair process is completed by a
DNA ligase, which is likely to be the DNA ligase III/
XRCC1 complex [47]. Although several DNA glycosylases
exist that deal with the removal of methylated bases, these
modifications — with the notable exception of O°-methyl-
guanine — do not alter the base-pairing properties of the
heterocycles and therefore are not mutagenic. Thus, mal-
function of these enzymes would not be expected to lead
to cancer. By contrast, hydrolytic deaminations of bases
are mutagenic, as they convert cytosine, 5-methylcytosine
and adenine to uracil, thymine and hypoxanthine, respec-
tively. The same applies to modifications by reactive
oxygen species, as the principal modification, G°, tends
to mispair with adenine during DNA replication. It was
therefore surprising that mutations in the genes encoding
the principal glycosylases that deal with these types of
damage, uracil DNA-glycosylase and 8-oxoguanine DNA-
glycosylase (OGG1), have not been identified in tumors to
date. Mice in which these genes have been inactivated by
targeted mutations do not develop cancers either [48,49],
most likely because of the redundancy of repair mechan-
isms that address these modifications in mammalian cells
[50,51]. However, hydrolytic and oxidative damage do
appear to play a role in tumorigenesis.

Deamination of 5-methycytosine in double-stranded
DNA gives rise to guanine/thymine mispairs. The
BER process helps revert them back to G/C, with the
removal of the mispaired thymines being mediated by
one of two glycosylases: thymine DNA-glycosylase
[52,53] or MBD4 (MED1) [13,54]. No mutations in the
former gene have been identified in human cancers to
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Schematic representation of G° repair in mammalian cells. Oxidation of guanine residues in DNA gives rise to G°/C mispairs, which are reverted to G/
C pairs by the action of OGG1 and BER. In cases where these mispairs remain uncorrected until DNA replication, polymerase-& will insert dJAMP
opposite G°. Removal of A by MYH and subsequent BER will convert the G°/A mispair to G°/C, which can be addressed again by OGG1. Left
uncorrected, the G°/A mispair will give rise to 50% progeny with a C — A transversion mutation. Oxidation of dGTP in the nucleotide pool will give rise
to dG°TP, which is normally hydrolyzed by MTH1 to dG°MP. Incorporation of dG°MP into the newly synthesized DNA strand during replication will
give rise to A/G° mispairs, which have to be corrected to A/T by the removal of dG°MP from the newly synthesized strand. This requires the
involvement of the MMR system. Unsolicited involvement of MYH and OGG1 would lead to the fixation of an A — C transversion mutation. Blue
arrows indicate mutagenic outcomes. n, t, newly synthesized and template DNA strands, respectively. (Adapted from [58].)

date, but MBD4 has been shown to be mutated in colon
tumors with MSI-H [55]. As this gene contains an Ay
microsatellite tract, the observed mutations are second-
ary, and probably arose as a result of the pre-existing
mismatch-repair defect in these tumors. However, dis-
ruption of the Mbd4 gene in mice is associated with an
increased mutability of CpG dinucleotides, the target
sequences of the DNA methyl transferases that modify
cytosines at these sites, and Mbd4~'~Apc"™* mice display
an increase in C — T transition mutations in the Apc gene
and enhanced intestinal tumorigenesis [15°°,16]. How-
ever, the link between MBD4 mutations and colon cancer
is tentative and needs to be strengthened, as both MSI
and Ap"™"* target the intestinal tract.

The latest culprit in colon cancer appears to be the MYH
gene, which encodes a DNA glycosylase responsible for
the removal of adenines that have been misincorporated
opposite G° residues during DNA replication [10]. The
metabolism of G° is highly complex (Figure 2) and
requires the co-ordinated action of at least three oxida-
tive-damage-specific enzymes: OGG1, which removes G°
from G°/C; MutT homologue (M'TH), which sanitizes the
oxidized nucleotide pool by hydrolyzing dG°TP; and
MYH, which removes adenine from A/G° mispairs [56].
Importantly, MYH must act only on the adenines mis-

incorporated into the newly synthesized strand opposite
G° in the template; if it also removed adenines in the
template strand that mispaired with dG°MP during DNA
synthesis, it would effectively fix the mutations. The
action of MYH must therefore be co-ordinated with
postreplicative MMR in order to prevent it from addres-
sing the latter mispairs. Available experimental evidence
supports this hypothesis: MYH appears to be associated
with replication foci [57], and a direct interaction with the
mismatch binding factor h(MSH2/hMSHG6 has also been
demonstrated [58]. Recently, mutations in the MYH gene
were identified in families with the multiple colorectal
adenoma syndrome [11°°,12°°]. The frequency of biallelic
inactivations of the MYH locus described in these studies
appears to be so high that mutations in the MYH gene
might turn out to be the principal cause of this syndrome.

Conclusions

MMR defects were the first DNA repair malfunction to
be linked with colon cancer. More recently, inactivation
of MBD4 (MED1), MYH and MGMT, either through
mutations or through transcriptional silencing, has also
been implicated in this malignancy. It is curious to note
that all three latter enzymes have also been shown to be
linked with MMR, either through a direct interaction of
the peptides concerned (MBD4 and MYH) or through a
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common substrate (MGM'T). A detailed study of these
interactions is likely to lead to a better understanding of
the transformation process of the colonic epithelium.
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