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The shaping of the early embryo requires pattern formation as

well as geometric and topological morphogenesis of the

developing tissues. The morphogenetic movements that lead

to geometric shape changes are controlled by patterned gene

expression. How particular movements are related to

patterning genes, and which underlying molecular and cellular

mechanisms lead to coordinated macroscopic movements

that induce morphogenesis, remain the challenging questions

of embryonic development. How morphogenetic movements

could modulate the expression of developmental genes is an

emerging question, potentially opening new horizons in

developmental biology. This question instigates the task of

characterizing the molecular and cellular mechanisms

underlying these mechano-transcription events.
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Introduction
The biochemical pattern of the embryo is induced by

cascades of gene expression that lay down the body plan

[1]. The morphology of the embryo is shaped by the

generation of forces that lead to tissue-specific deforma-

tions [2]. Genetic analyses have already demonstrated the

close control of the morphogenetic movements by pat-

terned gene expressions [3]; but how does a physical shape

emerge from a biochemical pattern? Can the expression of

some developmental genes be mechanically controlled by

changes in the physical shape of the embryo? Could this

feedback loop assure the robust coordination between

pattern formation and morphogenesis? Using examples

from both vertebrate and invertebrate development, we

illustrate recent findings addressing these fascinating

questions that relate the biochemical processes to the

morphological phenotype of the embryo. Recent progress

in understanding the relationship between morphogen-

esis and biochemical patterning will be reviewed, as will

emerging evidence for a role of mechanical forces in

modulating the expression of developmental genes.

Finally, the deciphering of the mechanical interplay

between gene expression and mechanical deformation

will require investigation of the underlying molecular

mechanism of mechano-transcription.

From patterns to movements: the genetic
control of morphogenesis
One of the most thoroughly understood examples of

genetically controlled morphogenetic movements is the

mesoderm invagination that initiates Drosophila embryo

gastrulation (Figure 1a,b) [4]. In this case, both the twist
and snail ventral genes are required for complete and

proper mesoderm invagination [5]. snail is thought to

initiate or ‘allow’ random stochastic cell deformations,

and twist, to subsequently trigger the collective cell-shape

changes. Both genes, together, are required for the simul-

taneous cell apical constrictions that induce the bending

force necessary for mesoderm invagination (Figure 1b)

[6]. Although the snail-dependent part of this process

remains poorly understood, much is known about the

mechanism related to the twist-dependent apical constric-

tion. The collective shape changes are induced by the

twist-dependent expression of folded gastrulation [7], a

secreted factor that activates the concertina G-protein

[8], thought to lead to the re-organization of the actin-

based cytoskeleton, via dRhoGEF2 activation [9,10].

Moreover, the re-localization of the non-muscle myosin

to the apices of mesodermal cells correlates with the

apical constriction of the individual cells [11]. Recently,

it has been shown in C. elegans embryos that non-muscle

myosin activity is essential for apical constriction and

ingression of the endodermal precursor [12�]. Interest-

ingly, the asymmetrical localization of PAR-3 in these

embryos is proposed to apically concentrate the acto-

myosin complex during invagination [13�]; however,

the underlying molecular mechanisms that produce the

active forces have not yet been fully elucidated. The

development of explant assays of C. elegans embryos that

recapitulate gastrulation will probably enable this issue to

be addressed [14].

Preceding the morphogenetic movements of gastrulation,

the cellularization of the Drosophila embryo involves a

cytoskeleton-regulated membrane growth around each
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nucleus of the blastoderm, followed by the basal closure

of the cell. The membrane furrow invaginates along

microtubules and a contractile actin ring forms at its

leading edge. The actin rings of individual cells are

connected to each other by the Bottleneck protein

[15]; hence, the actin–myosin contraction that is activated

by src64 is counter-balanced by the intercellular physical

links [16]. Such mechanical resistance is thought to be

released at the end of cellularization, after the rapid shut-

off of Bottleneck expression, thereby leading to the basal

contraction that closes the cells [16]. However, by con-

trast to previous assumptions, actin ring contraction does

not seem to be the major driving force of membrane

growth [17]. It is suggested that membrane invagination

relies primarily on the lateral addition of golgi-derived

membrane vesicles [18–20], although basal closure cru-

cially depends on myosin II activity [17].

Convergence–extension, another classical morphogene-

tic movement that occurs during gastrulation, has been
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The morphogenetic movements of the Drosophila embryo, from gastrulation to dorsal closure. (a) Cellular blastoderm, at the end of cellularization

(longitudinal section, left). A ventral–dorsal gradient of nuclear concentration of the transcription factor Dorsal triggers the expression of the twist

and snail mesodermal genes into the most ventral cells of the embryo (transversal section, center; in red, into the nuclei). Cell shape before

apical constriction (individual cell, right). (b) Gastrulation. Mesoderm cells contract their apex under the control of twist and snail (green arrows),

initiating mesoderm invagination (red arrow). (c) Gastrulation: germ-band extension (lateral view). Lateral tissues are submitted to a convergent-

extension movement, under the control of the antero-posterior patterning genes, via the planar polarity gene PAR-3/Bazooka. This leads to
dorso-ventral cell movements (green arrows), that trigger the macroscopic movement of germ-band extension (red arrow). (d) Germ-band

retraction follows germ-band extension. A RhoA-dependent dorso-ventral contraction of the lateral amnioserosa cells (green arrow) contributes

to the force that drives germ-band retraction (red arrow). (e) Dorsal closure follows germ-band retraction, and entails the closure of a dorsal gap,

made of the amnioserosa tissue. It is driven by the contraction of actin cables at the leading edge of epidermal tissues and by the contraction

of the amnioserosa itself (red arrows). The zippering process that completes dorsal closure is finely tuned by filopodial protusions (shown in inset)

that mediate the correct apposition of the segment halves. (Ant, anterior side; ven, ventral side of the embryo.) Drawings adapted from [3].
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studied in Xenopus and zebrafish. In vertebrate embryos,

convergence–extension depends on Wnt genes, and

is further elicited by molecular pathways that share

several components with the non-canonical wingless

pathways that direct planar cell polarity in Drosophila
(reviewed in [21]). This homology has been further

demonstrated by the characterization of the role in

vertebrate gastrulation of the Drosophila planar polarity

genes strabismus [22–24], prickle [25–28], Winderbost
[29], and RhoGTPases [30–33]. The establishment of

cell bipolar morphology that results from extension of

cytoplasmic protrusion in a medio-lateral direction ap-

pears to be essential for the directed cell intercalations

that drive convergence–extension [34,35]. Recently, it

has been shown in zebrafish that silberblick/Wnt11, which

is required for proper convergence–extension move-

ment, controls the orientation of the cellular processes

that might facilitate or stabilize cell movements [36�].
These results correlate with the fact that Rok2 in

zebrafish and RhoGTPases in Xenopus are downstream

components of Wnt [30–33]. The functions of the

different RhoGTPases in cytoskeleton dynamics during

vertebrate gastrulation will help to define the cellular

events that are triggered by the different non-canonical

wingless pathways [30,37]. In Drosophila, the germ-

band extension, driven by dorsal-to-ventral cell inter-

calations, is a convergence–extension movement

(Figure 1c) [38]. Recent data demonstrate a role for

PAR3/Bazooka in defining planar polarity at the cellular

level in this system [39��]. PAR-3 (part of the PAR

family of proteins that associate asymmetrically with the

cell cortex), which is required for correct germ-band

extension, accumulates at the dorso-ventral cell borders,

whereas non-muscle myosin II is distributed at the

reciprocal antero-posterior cell borders. However, these

polarized distributions depend on the pair-rule genes

even-skipped and runt, associated with the specification

of the antero-posterior axis of the Drosophila embryo,

and are not linked to the non-canonical wingless pathway

[39��]. The underlying cellular mechanisms that inter-

pret cell planar polarity into intercalation movements

remain unknown.

Interestingly, during germ-band retraction of the Droso-
phila embryo, which follows convergent-extension, cells

in the lateral germ-band do not intercalate. Thus, the

movement is not a reversal of convergence–extension,

but correlates with the dorso-ventral shortening of the

amnioserosa tissue (Figure 1d) [40�]. Amnioserosa cells

form lamellipodia that migrate over the caudal end of the

retracting germ-band. These lamellipodia might direct

migration of the amnioserosa and, therefore, maintain its

overlap over the retracting germ-band [40�]. The a1,2

laminin and the aPS3bPS integrin were found to be

required for both lamellipodia formation and amnioserosa

adhesion to the posterior pole of the germ-band and to the

underlying yolk sac [41].

More directly accessible, from the mechanical point of

view, is the Drosophila embryo dorsal closure event that

follows germ-band retraction. This movement involves

closure of a dorsal gap, made of the extra-embryonic

tissue amnioserosa, by drawing lateral epithelium from

the two sides up to the midline of the embryo (Figure 1e).

The epithelium movement seems to be driven by the

contraction of an actin cable that lies at its leading edge

[42] and its completion seems to be finely controlled by

dynamic filopodial protrusions [43]. However, the amnio-

serosa is not simply a passive tissue or substratum, but

participates directly in the morphogenetic movement

[44,45]. An elegant mapping of force distribution by laser

micro-dissection and mathematical modeling has quanti-

fied the relative contributions of the different cellular

processes to the dorsal closure [46��] and has further

confirmed the motor role of the amnioserosa in the

morphogenetic movement.

Testing of these models and emerging ideas will require

the set-up of new methods allowing measurement and

local perturbation of the mechanical forces and deforma-

tions that are involved in endogenous morphogenesis,

in vivo. Up until now, convergence–extension in Xenopus
explants is the only morphogenetic movement in which a

force has been measured and quantified — this was found

to be in the order of 1 mN [47].

From movements to gene expression:
the morphogenetic control of patterned
gene expression
Morphogenetic movements are closely controlled by the

expression of developmental genes. Do morphogenetic

movements, in turn, regulate the expression of develop-

mental genes? Morphogenetic cell migrations or changes

in the embryonic topology (e.g. at gastrulation) are

already known to play an important role through classical

induction. These movements cause changes in the cell

environment, enabling gene induction via new local

interactions. For instance, in the Drosophila embryo,

the segmented expression of the homeogene labial in

the endoderm is induced by its proximity, with the

visceral mesoderm that expresses ultrabithorax in the

para-segment 7. This leads to the perfect and precise

projection of the mesodermal segment onto the originally

un-segmented endoderm [48]. Also, in the chick embryo,

the migratory routes that are followed by the primitive

streak cells are known to determine their cell fate [49].

This indicates the existence of inductive signals that are

encountered by migratory cells during their movements,

in particular during their migration across the Hensen

node (the organizer center of the chick embryo, corre-

sponding to the Spemann’s organizer in amphibians).

Whether developmental gene expression is directly

controlled by mechanical forces that develop within a

tissue during morphogenesis is an emerging question of
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developmental biology. In the early Drosophila embryo,

the application of artificial cell-shape changes just before

gastrulation leads to a ventralized phenotype [50��]. In

particular, the mesodermal protein Twist, which is norm-

ally expressed in the most ventral cells of the embryo, is

expressed in all tissues after cell deformations. Interest-

ingly, Twist mechanical induction appears to be triggered

in the compressed cells of the stomodeum by endogenous

morphogenetic movements at gastrulation. Stomodeal

cells at the anterior pole undergo an important compres-

sion, due to the mechanical squeezing of the extending

germ-band, and exhibit a strong amplification in Twist

expression (Figure 2a). The use of mutants and biphoton

microsurgery inhibited germ-band extension and subse-

quently prevented the expression of Twist in these cells.

In these conditions, Twist expression was recovered in

response to the local compression that was exogenously

applied with a microneedle [50��]. These data indicate

that Twist expression at the anterior pole during gastrula-

tion is sensitive to changes in the cellular physical geo-

metry. In other words, the expression of some

developmental genes appears to be induced by changes

in the physical shape of the embryo. Such data reveal a

reciprocal interplay between patterning genes and mor-

phogenesis and underline the possible role of this feed-

back loop in regulating development.

In light of these observations, several experiments that

have been performed on vertebrates might further sup-

port a putative role for mechanical strains in the control of

developmental gene expression. For instance, the Xegr-1
mesodermal gene was found to be anomalously expressed

in Xenopus embryo cap explants and to correlate with

MAPK (mitogen activated protein kinase) pathway acti-

vation (Figure 2b) [51]. Two further studies have shown

that the MAPK pathway is activated by dissection and

even by pricking of the embryo with a microneedle

[52,53]. The explanations that have been proposed for

these results range from the induction of the MAPK

pathway by the release of soluble factors [51,52], to an

inducing effect of tissue relaxation [53]. This second

hypothesis, of a direct coupling between the cytoskeletal

tension and the signal transduction pathway, is in agree-

ment with data demonstrating that the MAPK pathway is

induced by wounding in intestinal epithelium, indepen-

dently of soluble factors [53,54]. Another experiment

indicates that tissue tension in explants of gastrula

Xenopus embryos is necessary for the development of a

normal set of rudiments and for differentiation [55]; or,

alternatively, that tension might be important for main-

taining the tissue cohesion rather than for differentiation

[55]. Finally, mechanical contraction waves were reported

to correlate with primary neural induction during devel-

opment in axolotl embryos [56].

Such mechanical induction might well play a coordinating

role during development. First, mechanical forces can

promote rapid and long-range interactions between non-

adjacent tissues, on a larger scale than those permitted by

soluble factors. These long-range inductive interactions

could permit the synchronization of different biochem-

ical events across the whole embryo at critical stages of

development. On a smaller spatial scale, this mechanical

induction might coordinate individual cell behaviors to

drive macrosocopic morphological changes and syn-

chronize these morphological changes with cell-fate

determination.

Flows as master regulators of organogenesis
Mechano-transcription effects may also be relevant to the

later stages of development that involve organogenesis.

Indeed, mechanical forces related to hydrodynamic flows

have long been proposed to play a significant role in

organogenesis, such as in lung and cardiac morphogen-

esis. Fetal breathing movements, peristaltic airway con-

tractions and lung fluid necessarily exert physical forces

onto the developing lung. They have been proposed to

play a role in balancing proliferation and apoptosis, and

therefore to control lung growth in vivo [57]. Further-

more, intra-cardiac fluid forces in the zebrafish embryo

heart were demonstrated recently to be necessary for

proper development of the heart [58��]. The implantation

of beads in the vicinity of the heart, to block the blood

efflux or influx, led to severe phenotypic defects in heart

formation, such as the complete omission of the third

chamber. Reminiscent of these macroscopic phenotypic

observations, vascular flow was also found to be necessary

for glomerular assembly during kidney morphogenesis

[59��], as well as for arterial–venous differentiation in the

chick embryo yolk sac [60]. More significantly, kidney

development depends on the expression of metallopro-

teinase 2, already known to be mechano-sensitive in other

systems [59��]. In contrast to the forces that develop

within the tissue throughout the course of the morpho-

genesis that shapes the embryo, hydrodynamic flows

couple the physiological function to the development

of the specialized organs. In other words, the phenotypic

structure adapts to the function through the inductive

properties of the fluid it has to process.

These examples underline the difficulties of interpreting

phenotypes for a process that implies the interplay be-

tween gene expression and mechanical induction. Indeed,

taking into account these inductive mechanical forces

in development or organogenesis might help the re-

evaluation of the role of some genes in certain phenotypes

[60]. For example, some mutants for genes that are

involved in vascular development also exhibit impaired

hemodynamic flows. In this case, what is the primary

effect that results in the defective vascular development?

In search of molecular morpho-sensors
How does a cell translate a mechanical signal into a

transcriptional event? Mechano-transduction and/or
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mechano-transcription events occur in many cell types,

such as cardiac myocytes, vascular smooth muscle, bone

and endothelial cells. Therefore, several in vitro studies

have focused on this issue. However, it is beyond the

scope of this paper to review this domain exhaustively

and so we will focus primarily on the opening questions

that have been raised by the study of endothelial cells

submitted to shear-stress. Endothelial cells are constantly

submitted to the shear flow of blood and adapt by expres-

sing numerous genes that remodel its structure. In vitro
studies aimed at understanding how endothelial cells

respond to such stimuli provide useful insights and a

paradigm for mechano-transcriptional processes [61]. Sev-

eral genes have been shown to be differentially expressed

under static and shear-stress conditions, and promoter

studies have identified different shear-stress responsive

elements (SSREs), thought to mediate some shear-stress

transcriptional responses [61,62]. Furthermore, different

Figure 2
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Gene mechanical induction and gene expression initiated by wounding. (a) Mechanical induction of the mesodermal gene twist into stomodeal

cells at the anterior pole. During mesoderm invagination, Twist expression is weak in stomodeal cells (pink) (a1), and is strongly amplified as

the cells are compressed by the extending germ-band (red) (a2). In the antero-posterior mutant bicoid nanos torso-like, defective in germ-band

extension, stomodeal cells remain uncompressed and the expression of Twist fades to background levels (a3). In these conditions, strong Twist

expression is rescued by mechanical compression, applied with a micro-needle (a4). (b) Explantation of the ectoderm cap of Xenopus embryo

blastula leads to anomalous expression of the mesodermal gene Xegr-1.This gene expression correlated with the activation of the MAPK

pathway. These effects were proposed to result from the release of soluble factors upon wounding. Alternatively, they might also be associated

with mechanical changes in shape, such as tension relaxation of the cap after explantation. WT, wild type. Drawings adapted from [3].
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transcription factors, including NF-kB, Egr-1, Sp1, fos,

jun and SREBP1 (sterol regulatory element-binding pro-

tein 1), were found to be activated by laminar shear-stress

and were able to bind to SSREs for some of them. Finally,

potential shear-stress receptors, like integrins aVb3, FAK

(focal adhesion kinase), c-Src and the VEGFR2 (vascular

endothelial growth factor receptor)–VE-cadherin–

b-catenin complex, were shown to be involved upstream

of these transcription factors or transcriptional activation

events [61]. However, the activation cascades of these

transcription factors that are triggered by laminar shear-

stress remain elusive.

The identification of mechano-sensors that are able to

transduce mechanical stimuli into a biochemical activity

has retained much interest. A first model proposes that

transduction events take place in the vicinity of the

plasma membrane [63]. These models suggest that

mechano-sensitive ion channels, tyrosine kinase recep-

tors, caveolae and G proteins work as mechano-sensors

[61,63]. Interestingly, mechanical membrane tension can

enhance transcriptional events by blocking the endocy-

tosis and preventing the degradation of the receptor–

ligand complex into endosomes. For example, the block-

ade of BMP2 endocytosis induced by plasma membrane

mechanical tension dramatically enhanced the BMP2-

dependent myoblastic/osteoblastic trans-differentiation

of murine cultured cells [64]. Other localized models

propose that mechanical transduction occurs at the sites

of cell–cell junctions or cell–matrix interactions, through

the activation of PECAM-1 (platelet/endothelial cell

adhesion molecule-1), of the VEGFR2–VE–cadherin–

b-catenin complex or integrins [61]. In agreement with

this view, b-catenin/armadillo seems to be involved in

Twist mechanical induction during Drosophila gastrula-

tion [50��]. Finally, a delocalized model of mechano-

transduction suggests that forces applied at the cell

surface are transmitted, through integrins and via the

cytoskeleton, to other locations of the cells and poten-

tially to the nucleus, where they could trigger transcrip-

tional events [65]. Such a model has been speculated to

explain how the contraction waves could trigger neuronal

differentiation in axolotl embryos [56]. However, it is not

clear whether these putative mechano-sensors act inde-

pendently and whether the different molecular pathways

they activate are integrated to elicit a transcriptional

response. In addition, the growing number of molecules

or structures that are involved in mechanical transduction

highlights the need to definitively distinguish between

molecular complexes that are activated by mechanical

stimuli and the cellular mechano-sensor(s) that triggers

subsequent responses [63].

Conclusions
The studies discussed in this review highlight the diver-

sity and the conservation of the cellular mechanisms that

are involved in morphogenetic movements in vertebrate

and invertebrate embryos. Moreover, an increasing num-

ber of examples point to the existence of a reciprocal

interplay between expression of some developmental

genes and the mechanical forces that are associated with

morphogenetic movements or with hydrodynamic flows

during development. Challenging issues that remain to be

addressed include the deciphering of the underlying

molecular mechanisms of this interplay and the uncover-

ing of the physiological significance of these mechano-

transcription events during development.
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